Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Gaspar, D., S. N. Fernandes, G. dea Oliveira, J. G. Fernandes, P. Grey, R. V. Pontes, L. Pereira, R. Martins, M. H. Godinho, and E. Fortunato. "{Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors.}." Nanotechnology. 25 (2014): 094008. AbstractWebsite

Cotton-based nanocrystalline cellulose (NCC), also known as nanopaper, one of the major sources of renewable materials, is a promising substrate and component for producing low cost fully recyclable flexible paper electronic devices and systems due to its properties (lightweight, stiffness, non-toxicity, transparency, low thermal expansion, gas impermeability and improved mechanical properties).Here, we have demonstrated for the first time a thin transparent nanopaper-based field effect transistor (FET) where NCC is simultaneously used as the substrate and as the gate dielectric layer in an 'interstrate' structure, since the device is built on both sides of the NCC films; while the active channel layer is based on oxide amorphous semiconductors, the gate electrode is based on a transparent conductive oxide.Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (>7 cm(2) V (-1) s(-1)), drain-source current on/off modulation ratio higher than 10(5), enhancement n-type operation and subthreshold gate voltage swing of 2.11 V/decade. The NCC film FET characteristics have been measured in air ambient conditions and present good stability, after two weeks of being processed, without any type of encapsulation or passivation layer. The results obtained are comparable to ones produced for conventional cellulose paper, marking this out as a promising approach for attaining high-performance disposable electronics such as paper displays, smart labels, smart packaging, RFID (radio-frequency identification) and point-of-care systems for self-analysis in bioscience applications, among others.

2011
Nolan, M. G., J. A. Hamilton, S. O’Brien, G. Bruno, L. Pereira, E. Fortunato, R. Martins, I. M. Povey, and M. E. Pemble. "{The characterisation of aerosol assisted CVD conducting, photocatalytic indium doped zinc oxide films}." Journal of Photochemistry and Photobiology A: Chemistry. 219 (2011): 10-15. AbstractWebsite
n/a
O'Brien, Shane, Mehmet \c{C}opuroglu, Paul Tassie, Mark G. Nolan, Jeff A. Hamilton, Ian Povey, Luis Pereira, Rodrigo Martins, Elvira Fortunato, and Martyn E. Pemble. "{The effect of dopants on the morphology, microstructure and electrical properties of transparent zinc oxide films prepared by the sol-gel method}." Thin Solid Films. 520 (2011): 1174-1177. AbstractWebsite
n/a
2010
O'Brien, Shane, Mark G. Nolan, Mehmet \c{C}opuroglu, Jeff A. Hamilton, Ian Povey, Luis Pereira, Rodrigo Martins, Elvira Fortunato, and Martyn Pemble. "{Zinc oxide thin films: Characterization and potential applications}." Thin Solid Films. 518 (2010): 4515-4519. AbstractWebsite
n/a
Olziersky, Antonis, Pedro Barquinha, Anna Vilà, Luís Pereira, Gonçalo Gonçalves, Elvira Fortunato, Rodrigo Martins, and Juan R. Morante. "{Insight on the SU-8 resist as passivation layer for transparent Ga[sub 2]O[sub 3]–In[sub 2]O[sub 3]–ZnO thin-film transistors}." Journal of Applied Physics. 108 (2010): 064505. AbstractWebsite
n/a
Barquinha, Pedro, Luis Pereira, Gonçalo Gonçalves, Danjela Kuscer, Marija Kosec, Anna Vilà, Antonis Olziersky, Juan Ramon Morante, Rodrigo Martins, and Elvira Fortunato. "{Low-temperature sputtered mixtures of high-$ąppa$ and high bandgap dielectrics for GIZO TFTs}." Journal of the Society for Information Display. 18 (2010): 762. AbstractWebsite
n/a
2009
Pereira, Lu\'ıs, Pedro Barquinha, Gonçalo Gonçalves, Anna Vilà, Antonis Olziersky, Joan Morante, Elvira Fortunato, and Rodrigo Martins. "{Sputtered multicomponent amorphous dielectrics for transparent electronics}." physica status solidi (a). 206 (2009): 2149-2154. AbstractWebsite
n/a