In this work we calculate photoionization and X-ray production cross-sections (XPCS) of M-shell vacancies in Hg at incident photon energy of 5.96 keV (low.
In this work, we obtained a charge state distribution inside an Ar plasma produced by an electron–cyclotron-resonance ion source. The processes that lead to the observed lines in x-ray spectra are identified and included in the simulated x-ray spectrum. The geometrical constraints of the flat double crystal spectrometer, used to measure the x-ray spectrum, are investigated as they are crucial for correctly obtaining the ion densities from the observed transition amplitudes. Multiple electron impact ionization is included, and a realistic electron velocity distribution is taken into account. The charge state distribution of the Ar ions is compared to measured extracted ionic currents.
In this work, we obtained a charge state distribution inside an Ar plasma produced by an electron–cyclotron-resonance ion source. The processes that lead to the observed lines in x-ray spectra are identified and included in the simulated x-ray spectrum. The geometrical constraints of the flat double crystal spectrometer, used to measure the x-ray spectrum, are investigated as they are crucial for correctly obtaining the ion densities from the observed transition amplitudes. Multiple electron impact ionization is included, and a realistic electron velocity distribution is taken into account. The charge state distribution of the Ar ions is compared to measured extracted ionic currents.
The use of a vacuum double crystal spectrometer, coupled to an electron-cyclotron resonance ion source (ECRIS), allows to measure low-energy x-ray transitions energies in highly-charged ions with accuracies of the order of a few parts per million. We have used this installation to measure the 1s2p 1 P1 - 1s2 1 S0 diagram line and the 1s2s 3 S1 - 1s2 1 S0 forbidden M1 transition energies in helium-like argon, the 1s2s2p 2 P j 1s2 2s 2 S1/2 transitions in lithium-like argon and the 1s2s2 2p 1 P1 - 1s2 2s2 1 S0 transition in beryllium-like argon. These transition measurements have accuracies between 2 and 4 ppm depending on the line intensity. Thanks to the excellent agreement between the simulations and the measurements, we were also able to measure the transition width of all the allowed transitions. The results are compared to recent QED and relativistic many-body calculations.
The use of a vacuum double crystal spectrometer, coupled to an electron-cyclotron resonance ion source (ECRIS), allows to measure low-energy x-ray transitions energies in highly-charged ions with accuracies of the order of a few parts per million. We have used this installation to measure the 1s2p 1 P1 - 1s2 1 S0 diagram line and the 1s2s 3 S1 - 1s2 1 S0 forbidden M1 transition energies in helium-like argon, the 1s2s2p 2 P j 1s2 2s 2 S1/2 transitions in lithium-like argon and the 1s2s2 2p 1 P1 - 1s2 2s2 1 S0 transition in beryllium-like argon. These transition measurements have accuracies between 2 and 4 ppm depending on the line intensity. Thanks to the excellent agreement between the simulations and the measurements, we were also able to measure the transition width of all the allowed transitions. The results are compared to recent QED and relativistic many-body calculations.
The concentration of lead in liver and kidneys of Wistar rats, fed with lead since fetal period in relation to their age and to a control group, was determined. A group of rats was exposed to lead acetate (n=30) in drinking water and the other group was exposed to normal water (n=20). Samples were collected from rats aging between 1 and 11 months and were analyzed by Energy Dispersive X-ray Fluorescence (EDXRF) without any chemical preparation. The EDXRF results were assessed by the PIXE (Proton Induced X-ray Emission) technique. The formaldehyde used to preserve the samples was also analyzed by ETAAS (Electro-Thermal Atomic Absorption Spectrometry) in order to verify if there was any loss of lead from the samples to the formaldehyde. We found that the loss was not significant (<2%). Concerning the mean values of the lead concentration measured in the contaminated soft tissues, in liver they range from 6 to 22μgg(-1), and in kidneys from 44 to 79μgg(-1). The control rats show, in general, values below the EDXRF detection limit (2μgg(-1)). The ratio kidney/liver ranges from 2 to 10 and is strongly positively correlated with the age of the animals. A Spearman correlation matrix to investigate the correlation between elemental concentrations and the dependence of these concentrations with age showed that there is a strong positive correlation with age for lead in the liver but not in the kidney. The correlation matrix showed also that the concentration of lead in these two soft tissues is not correlated. The lead accumulation in liver is made by different plateaus that strongly decrease with age. It was verified the existence of two levels of accumulation in kidney, not very highlighted, which might be indicative of a maximum accumulation level for lead in kidney.
The concentration of lead in liver and kidneys of Wistar rats, fed with lead since fetal period in relation to their age and to a control group, was determined. A group of rats was exposed to lead acetate (n=30) in drinking water and the other group was exposed to normal water (n=20). Samples were collected from rats aging between 1 and 11 months and were analyzed by Energy Dispersive X-ray Fluorescence (EDXRF) without any chemical preparation. The EDXRF results were assessed by the PIXE (Proton Induced X-ray Emission) technique. The formaldehyde used to preserve the samples was also analyzed by ETAAS (Electro-Thermal Atomic Absorption Spectrometry) in order to verify if there was any loss of lead from the samples to the formaldehyde. We found that the loss was not significant (<2%). Concerning the mean values of the lead concentration measured in the contaminated soft tissues, in liver they range from 6 to 22μgg(-1), and in kidneys from 44 to 79μgg(-1). The control rats show, in general, values below the EDXRF detection limit (2μgg(-1)). The ratio kidney/liver ranges from 2 to 10 and is strongly positively correlated with the age of the animals. A Spearman correlation matrix to investigate the correlation between elemental concentrations and the dependence of these concentrations with age showed that there is a strong positive correlation with age for lead in the liver but not in the kidney. The correlation matrix showed also that the concentration of lead in these two soft tissues is not correlated. The lead accumulation in liver is made by different plateaus that strongly decrease with age. It was verified the existence of two levels of accumulation in kidney, not very highlighted, which might be indicative of a maximum accumulation level for lead in kidney.
The spontaneous two-photon emission in hydrogenlike ions is investigated within the framework of second- order perturbation theory and Dirac’s equation. Special attention is paid to the angular correlation of the emitted photons as well as to the degree of linear polarization of one of the two photons, if the second is just observed under arbitrary angles. Expressions for the angular correlation and the degree of linear polarization are expanded in powers of cosine functions of the two-photon opening angle, whose coefficients depend on the atomic number and the energy sharing of the emitted photons. The effects of including higher (electric and magnetic) multipoles upon the emitted photon pairs beyond the electric-dipole approximation are also discussed. Calculations of the coefficients are performed for the transitions 2s1/2 → 1s1/2, 3d3/2 → 1s1/2, and 3d5/2 → 1s1/2, along the entire hydrogen isoelectronic sequence (1