Recent Publications

Export 16 results:
Sort by: Author Title Type [ Year  (Desc)]
2021
Wain, Alison, Diogo Castro, {Maria Fernanda} Rollo, Frederico Nogueira, Gon{\c c}alo Santos, {Maria Gra{\c da c}a} Filipe, Isabel Tissot, {Jorge Miguel} Sampaio, {José Paulo} Santos, Manuel Lemos, Marta Manso, Matthias Tissot, Mauro Guerra, Miles Oglethorpe, Pedro Amaro, Pedro Pedroso, Rui Silva, Sofia Pessanha, and {Tiago A. N. } Silva. Cultura Material, Cultura Científica: Património Industrial para o Futuro. Portugal: Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2021. Abstract

Material, Culture, Scientific Culture: Industrial Heritage for the Future

Santos, J. P., Iulian Otel, Joao Silveira, Valentina Vassilenko, António Mata, Maria Luísa Carvalho, José Paulo Santos, and Sofia Pessanha. "Application of Unsupervised Multivariate Analysis Methods to Raman Spectroscopic Assessment of Human Dental Enamel." Computers (2021). AbstractWebsite
n/a
2018
LIDON, FERNANDO CEBOLA, KARLIANA OLIVEIRA, CARLOS GALHANO, Mauro Guerra, MARIA MANUELA RIBEIRO, JOÃO PELICA, INÊS PATACO, JOSÉ COCHICHO RAMALHO, ANTÓNIO EDUARDO LEITÃO, ANA SOFIA ALMEIDA, PAULA SCOTTI CAMPOS, Ana Ribeiro-Barros, ISABEL P. PAIS, Maria Manuela Silva, Maria Luisa Carvalho, Jose Paulo Santos, MARIA FERNANDA PESSOA, and FERNANDO HENRIQUE REBOREDO. "{SELENIUM BIOFORTIFICATION OF RICE THROUGH FOLIAR APPLICATION WITH SELENITE AND SELENATE}." Experimental Agriculture (2018): 1-15. Abstract

n/a

2016
Ito, Y., T. Tochio, H. Ohashi, M. Yamashita, S. Fukushima, M. Polasik, K. Słabkowska, Ł. Syrocki, E. Szymańska, J. Rzadkiewicz, P. Indelicato, J. P. Marques, M. C. Martins, J. P. Santos, and F. Parente. "Kα1,2x-ray linewidths, asymmetry indices, and [KM]shake probabilities in elements Ca to Ge and comparison with theory for Ca, Ti, and Ge." Physical Review A 94 (2016): 042506-11. AbstractWebsite
n/a
2010
Pinto, R. M., R. I. Olariu, J. Lameiras, F. T. Martins, A. A. Dias, G. J. Langley, P. Rodrigues, C. D. Maycock, J. P. Santos, M. F. Duarte, M. T. Fernandez, and M. L. Costa. "Study of selected benzyl azides by UV photoelectron spectroscopy and mass spectrometry." Journal of Molecular Structure 980 (2010): 163-171. AbstractWebsite
Benzyl azide and the three methylbenzyl azides were synthesized and characterized by mass spectrometry (MS) and ultraviolet photoelectron spectroscopy (UVPES). The electron ionization fragmentation mechanisms for benzyl azide and their methyl derivatives were studied by accurate mass measurements and linked scans at constant B/E. For benzyl azide, in order to clarify the fragmentation mechanism, labelling experiments were performed. From the mass analysis of methylbenzyl azides isomers it was possible to differentiate the isomers ortho, meta and para. The abundance and nature of the ions resulting from the molecular ion fragmentation, for the three distinct isomers of substituted benzyl azides, were rationalized in terms of the electronic properties of the substituent. Concerning the para-isomer, IRC calculations were performed at UHF/6-31G(d) level. The photoionization study of benzyl azide, with He(I) radiation, revealed five bands in the 8-21 eV ionization energies region. From every photoelectron spectrum of methylbenzyl azides isomers it has been identified seven bands, on the same range as the benzyl azide. Interpretation of the photoelectron spectra was accomplished applying Koopmans' theorem to the SCF orbital energies obtained at HF/6-311++G(d, p) level.
Pinto, R. M., R. I. Olariu, J. Lameiras, F. T. Martins, A. A. Dias, G. J. Langley, P. Rodrigues, C. D. Maycock, J. P. Santos, M. F. Duarte, M. T. Fernandez, and M. L. Costa. "Study of selected benzyl azides by UV photoelectron spectroscopy and mass spectrometry." Journal of Molecular Structure 980 (2010): 163-171. AbstractWebsite

Benzyl azide and the three methylbenzyl azides were synthesized and characterized by mass spectrometry (MS) and ultraviolet photoelectron spectroscopy (UVPES). The electron ionization fragmentation mechanisms for benzyl azide and their methyl derivatives were studied by accurate mass measurements and linked scans at constant B/E. For benzyl azide, in order to clarify the fragmentation mechanism, labelling experiments were performed. From the mass analysis of methylbenzyl azides isomers it was possible to differentiate the isomers ortho, meta and para. The abundance and nature of the ions resulting from the molecular ion fragmentation, for the three distinct isomers of substituted benzyl azides, were rationalized in terms of the electronic properties of the substituent. Concerning the para-isomer, IRC calculations were performed at UHF/6-31G(d) level. The photoionization study of benzyl azide, with He(I) radiation, revealed five bands in the 8-21 eV ionization energies region. From every photoelectron spectrum of methylbenzyl azides isomers it has been identified seven bands, on the same range as the benzyl azide. Interpretation of the photoelectron spectra was accomplished applying Koopmans' theorem to the SCF orbital energies obtained at HF/6-311++G(d, p) level.

2007
Mayo, R., M. Ortiz, F. Parente, and J. P. Santos. "Experimental and theoretical transition probabilities for lines arising from the 6p configurations of Au II." Journal of Physics B: Atomic, Molecular and Optical Physics 40 (2007): 4651. AbstractWebsite
Experimental relative transition probabilities for the 16 more pro-eminent lines arising from the 6p configurations of Au II were determined from the emission-line intensities in a laser-produced plasma. The experiment was carried out using a Cu-Au alloy with 10% Au content in order to obtain an optically thin plasma. Transition probabilities were placed on an absolute scale by using theoretical lifetimes calculated in this work, line-strength sum rules and Boltzmann plot. A comparison has been conducted between present experimental results, the theoretical data available and new calculations with the multi-configuration Dirac-Fock method reported in this work, as well as a study of the plasma conditions.
Mayo, R., M. Ortiz, F. Parente, and J. P. Santos. "Experimental and theoretical transition probabilities for lines arising from the 6p configurations of Au II." Journal of Physics B: Atomic, Molecular and Optical Physics 40 (2007): 4651. AbstractWebsite

Experimental relative transition probabilities for the 16 more pro-eminent lines arising from the 6p configurations of Au II were determined from the emission-line intensities in a laser-produced plasma. The experiment was carried out using a Cu-Au alloy with 10% Au content in order to obtain an optically thin plasma. Transition probabilities were placed on an absolute scale by using theoretical lifetimes calculated in this work, line-strength sum rules and Boltzmann plot. A comparison has been conducted between present experimental results, the theoretical data available and new calculations with the multi-configuration Dirac-Fock method reported in this work, as well as a study of the plasma conditions.

2006
Santos, J. P., M. L. Costa, R. I. Olariu, and F. Parente. "Theoretical study of the molecular properties of benzyl azide, 2-, 3- and 4-methyl benzyl azide." The European Physical Journal D - Atomic, Molecular and Optical Physics 39 (2006): 379-384. AbstractWebsite
Ab initio and density functional calculations have been performed to study the benzyl azide, 2-, 3- and 4-methyl benzyl azides. Several molecular properties, such as conformational equilibrium, optimal geometry, and vibrational frequencies, have been computed for these molecules. Ionisation energies were also computed.
Santos, J. P., M. L. Costa, R. I. Olariu, and F. Parente. "Theoretical study of the molecular properties of benzyl azide, 2-, 3- and 4-methyl benzyl azide." The European Physical Journal D - Atomic, Molecular and Optical Physics 39 (2006): 379-384. AbstractWebsite

Ab initio and density functional calculations have been performed to study the benzyl azide, 2-, 3- and 4-methyl benzyl azides. Several molecular properties, such as conformational equilibrium, optimal geometry, and vibrational frequencies, have been computed for these molecules. Ionisation energies were also computed.

2005
Dyke, J. M., G. Levita, A. Morris, J. S. Ogden, A. A. Dias, M. Algarra, J. P. Santos, M. L. Costa, P. Rodrigues, M. M. Andrade, and M. T. Barros. "Contrasting Behavior in Azide Pyrolyses: An Investigation of the Thermal Decompositions of Methyl Azidoformate, Ethyl Azidoformate and 2-Azido-N, N-dimethylacetamide by Ultraviolet Photoelectron Spectroscopy and Matrix Isolation Infrared Spectroscopy." Chemistry - A European Journal 11 (2005): 1665-1676. Abstract
The thermal decompositions of methyl azidoformate (N3COOMe), ethyl azidoformate (N3COOEt) and 2-azido-N,N-dimethylacetamide (N3CH2CONMe2) have been studied by matrix isolation infrared spectroscopy and real-time ultraviolet photoelectron spectroscopy. N2 appears as an initial pyrolysis product in all systems, and the principal interest lies in the fate of the accompanying organic fragment. For methyl azidoformate, four accompanying products were observed: HNCO, H2CO, CH2NH and CO2, and these are believed to arise as a result of two competing decomposition routes of a four-membered cyclic intermediate. Ethyl azidoformate pyrolysis yields four corresponding products: HNCO, MeCHO, MeCHNH and CO2, together with the five-membered-ring compound 2-oxazolidone. In contrast, the initial pyrolysis of 2-azido-N,N-dimethyl acetamide, yields the novel imine intermediate Me2NCOCHNH, which subsequently decomposes into dimethyl formamide (HCONMe2), CO, Me2NH and HCN. This intermediate was detected by matrix isolation IR spectroscopy, and its identity confirmed both by a molecular orbital calculation of its IR spectrum, and by the temperature dependence and distribution of products in the PES and IR studies. Mechanisms are proposed for the formation and decomposition of all the products observed in these three systems, based on the experimental evidence and the results of supporting molecular orbital calculations.
Dyke, J. M., G. Levita, A. Morris, J. S. Ogden, A. A. Dias, M. Algarra, J. P. Santos, M. L. Costa, P. Rodrigues, M. M. Andrade, and M. T. Barros. "Contrasting Behavior in Azide Pyrolyses: An Investigation of the Thermal Decompositions of Methyl Azidoformate, Ethyl Azidoformate and 2-Azido-N, N-dimethylacetamide by Ultraviolet Photoelectron Spectroscopy and Matrix Isolation Infrared Spectroscopy." Chemistry - A European Journal 11 (2005): 1665-1676. Abstract

The thermal decompositions of methyl azidoformate (N3COOMe), ethyl azidoformate (N3COOEt) and 2-azido-N,N-dimethylacetamide (N3CH2CONMe2) have been studied by matrix isolation infrared spectroscopy and real-time ultraviolet photoelectron spectroscopy. N2 appears as an initial pyrolysis product in all systems, and the principal interest lies in the fate of the accompanying organic fragment. For methyl azidoformate, four accompanying products were observed: HNCO, H2CO, CH2NH and CO2, and these are believed to arise as a result of two competing decomposition routes of a four-membered cyclic intermediate. Ethyl azidoformate pyrolysis yields four corresponding products: HNCO, MeCHO, MeCHNH and CO2, together with the five-membered-ring compound 2-oxazolidone. In contrast, the initial pyrolysis of 2-azido-N,N-dimethyl acetamide, yields the novel imine intermediate Me2NCOCHNH, which subsequently decomposes into dimethyl formamide (HCONMe2), CO, Me2NH and HCN. This intermediate was detected by matrix isolation IR spectroscopy, and its identity confirmed both by a molecular orbital calculation of its IR spectrum, and by the temperature dependence and distribution of products in the PES and IR studies. Mechanisms are proposed for the formation and decomposition of all the products observed in these three systems, based on the experimental evidence and the results of supporting molecular orbital calculations.

2004
Dyke, J. M., G. Levita, A. Morris, J. S. Ogden, A. A. Dias, M. Algarra, J. P. Santos, M. L. Costa, P. Rodrigues, and M. T. Barros. "A Study of the Thermal Decomposition of 2-Azidoacetamide by Ultraviolet Photoelectron Spectroscopy and Matrix-Isolation Infrared Spectroscopy:  Identification of the Imine Intermediate H2NCOCHNH." The Journal of Physical Chemistry A 108 (2004): 5299-5307. AbstractWebsite

The thermal decomposition of 2-azidoacetamide (N3CH2CONH2) has been studied by matrix-isolation infrared spectroscopy and real-time ultraviolet photoelectron spectroscopy. N2, CH2NH, HNCO, CO, NH3, and HCN are observed as high-temperature decomposition products, while at lower temperatures, the novel imine intermediate H2NCOCHNH is observed in the matrix-isolation IR experiments. The identity of this intermediate is confirmed both by ab initio molecular orbital calculations of its IR spectrum and by the temperature dependence and distribution of products in the photoelectron spectroscopy (PES) and IR studies. Mechanisms are proposed for the formation and decomposition of the intermediate consistent both with the observed results and with estimated activation energies based on pathway calculations.

2001
Indelicato, P., G. C. Rodrigues, E. Lindroth, M. A. Ourdane, F. Parente, J. P. Santos, P. Patté, and J. Bieron. "Relativistic and many-body effects on total binding energies of Cesium and other highly-charged ion." Physica Scripta T92 (2001): 327. Abstract

The determination of atomic masses from highly ionized atoms using Penning Traps requires precise values for electronic binding energies. In the present work, binding energies of several ions (from several elements) are calculated in the framework of two relativistic many-body methods: Relativistic Many-Body Perturbation Theory (RMBPT) and Multi-Configuration Dirac– Fock (MCDF). The ions studied in this work are: Cl (He and Li-like), Se (F and Ne-like), Cs (He, Be, Ne, Al, Cl, Ar, K, Kr, Xe-like and neutral Cs), Hg, Pb and U (Br and Kr-like). Some of them are presented in this paper. Cesium has been treated in more details, allowing for a systematic comparison between MCDF and RMBPT methods. The Cs ions binding energies allow for the determination of atomic Cs mass, which can be used in a QED-independent fine structure constant determination.

Indelicato, P., E. Lindroth, T. Beier, J. Bieron, A. M. Costa, I. Lindgren, J. P. Marques, A. M. Martenson-Pendrill, M. C. Martins, M. A. Ourdane, F. Parente, P. Patté, G. C. Rodrigues, S. Salomonson, and J. P. Santos. "Relativistic Calculations for Trapped Ions." Hyperfine Interactions 132 (2001): 347-361. AbstractWebsite

We present recent results in the field of total binding energy calculations, Landщ factors, quantum electrodynamics corrections and lifetime that are of interest for ion traps and ion sources. We describe in detail MCDF and RMBPT calculation of ionic binding energies, which are needed for the determination of atomic masses from highly charged ion measurements. We also show new results concerning Landщ factor in 3-electron ions. Finally we describe how relativistic calculations can help understand the physics of heavy ion production ion sources.

1997
Moser, I., F. Mota-Furtado, P. F. O'Mahony, and J. P. Santos. "Rydberg wave packets in parallel electric and magnetic fields." Physical Review A 55 (1997): 3724-3729. Abstract

The magnitude of the time autocorrelation function M between states excited by two Gaussian laser pulses is calculated for both hydrogen and rubidium atoms inparallel electric and magnetic fields. M is determined by a full quantum-mechanical calculation but the peaks are identified with the periods of the shortest periodicorbits of the corresponding classical system. Qualitative agreement is obtained with experimental results, however, discrepancies are found in the relative heights ofthe peaks.