The two-photon $1{s}^{2}2s2p\phantom{\rule{0.16em}{0ex}}{}^{3}{P}_{0}\ensuremath{\rightarrow}1{s}^{2}{s}^{2}\phantom{\rule{0.16em}{0ex}}{}^{1}{S}_{0}$ transition in berylliumlike ions is investigated theoretically within a fully relativistic framework and a second-order perturbation theory. We focus our analysis on how electron correlation, as well as the negative-energy spectrum, can affect the forbidden $E1M1$ decay rate. For this purpose, we include the electronic correlation via an effective local potential and within a single-configuration-state model. Due to its experimental interest, evaluations of decay rates are performed for berylliumlike xenon and uranium. We find that the negative-energy contribution can be neglected at the present level of accuracy in the evaluation of the decay rate. On the other hand, if contributions of electronic correlation are not carefully taken into account, it may change the lifetime of the metastable state by up to 20%. By performing a fully relativistic $jj$-coupling calculation, we find a decrease of the decay rate by two orders of magnitude compared to nonrelativistic $LS$-coupling calculations, for the selected heavy ions.
Lopes, A., A. Gabriel, J. Machado, P. Ribeiro, R. Gomes, Jo M. P. o Coelho, C. O. Silva, C. P. Reis, J. P. Santos, and P. Vieira. "Multiple Source Phototherapy in Breast Cancer: A Viability Study." In 9th International Conference on Biomedical Electronics and Devices, 247-250. SCITEPRESS - Science and and Technology Publications, 2016. Abstract
Journal of Physics B: Atomic, Molecular and Optical Physics, 48(2015) 144027. doi:10.1088/0953-4075/48/14/144027
Diepold, Marc, Luis M. P. Fernandes, Jorge Machado, Pedro Amaro, Marwan Abdou-Ahmed, Fernando D. Amaro, Aldo Antognini, François Biraben, Tzu-Ling Chen, Daniel S. Covita, Andreas J. Dax, Beatrice Franke, Sandrine Galtier, Andrea L. Gouvea, Johannes Götzfried, Thomas Graf, Theodor W. Hänsch, Malte Hildebrandt, Paul Indelicato, Lucile Julien, Klaus Kirch, Andreas Knecht, Franz Kottmann, Julian J. Krauth, Yi-Wei Liu, Cristina M. B. Monteiro, Françoise Mulhauser, Boris Naar, Tobias Nebel, François Nez, Jose Paulo Santos, Joaquim M. F. dos Santos, Karsten Schuhmann, Csilla I. Szabo, David Taqqu, João F. C. A. Veloso, Andreas Voss, Birgit Weichelt, and Randolf Pohl. "Improved x-ray detection and particle identification with avalanche photodiodes." Review of Scientific Instruments 86 (2015): 053102-7. AbstractWebsite
Lead is a potent toxicant associated with adverse cardiovascular effects and hypertension in children. Yet, few studies have determined if autonomic dysfunction associated with lead exposure involves brain regions which regulate autonomic responses. Central autonomic nuclei such as the nucleus tractus solitarius (NTS) and hypothalamic defence area (HDA) may be particularly sensitive to lead infiltration because they are adjacent to ventricles and areas with semi-permeable blood-brain-barriers. To understand if autonomic nuclei are sensitive to lead accumulation Wistar rats were exposed to lead from the gestational period and lead levels were quantified in brain regions that regulate arterial pressure: the NTS and the HDA. Energy dispersive X-ray fluorescence (EDXRF) was used to quantify total brain lead levels and revealed no differences between exposed and control tissues; measured values were close to the detection limit (2μg/g). Electrothermal atomic absorption spectrometry (ETAAS) was also used, which has a greater sensitivity, to quantify lead. There was ∼2.1μg/g lead in the NTS and ∼3.1μg/g lead in the HDA of exposed rats, and no lead in the control rats. There were greater lead levels in the HDA (∼50%) as compared with the NTS. Pathology studies revealed more prominent lead granules in the HDA as compared with the NTS. Increased microglia and astrocyte activation was also noted in the NTS of lead exposed rats as compared with the HDA. Regional differences in neuro-inflammatory responses likely contribute to heterogeneous lead accumulation, with enhanced clearance of lead in the NTS. Future studies will resolve the mechanisms underpinning tissue-specific lead accumulation.
Lead is a potent toxicant associated with adverse cardiovascular effects and hypertension in children. Yet, few studies have determined if autonomic dysfunction associated with lead exposure involves brain regions which regulate autonomic responses. Central autonomic nuclei such as the nucleus tractus solitarius (NTS) and hypothalamic defence area (HDA) may be particularly sensitive to lead infiltration because they are adjacent to ventricles and areas with semi-permeable blood-brain-barriers. To understand if autonomic nuclei are sensitive to lead accumulation Wistar rats were exposed to lead from the gestational period and lead levels were quantified in brain regions that regulate arterial pressure: the NTS and the HDA. Energy dispersive X-ray fluorescence (EDXRF) was used to quantify total brain lead levels and revealed no differences between exposed and control tissues; measured values were close to the detection limit (2μg/g). Electrothermal atomic absorption spectrometry (ETAAS) was also used, which has a greater sensitivity, to quantify lead. There was ∼2.1μg/g lead in the NTS and ∼3.1μg/g lead in the HDA of exposed rats, and no lead in the control rats. There were greater lead levels in the HDA (∼50%) as compared with the NTS. Pathology studies revealed more prominent lead granules in the HDA as compared with the NTS. Increased microglia and astrocyte activation was also noted in the NTS of lead exposed rats as compared with the HDA. Regional differences in neuro-inflammatory responses likely contribute to heterogeneous lead accumulation, with enhanced clearance of lead in the NTS. Future studies will resolve the mechanisms underpinning tissue-specific lead accumulation.