Publications

Export 10 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Pereira, J. C. R., A. M. P. de Jesus, J. Xavier, and A. A. Fernandes. "ULCF assessment of X52 piping steel by means of cyclic bending tests." Journal of Constructional Steel Research. 138 (2017): 663-674. AbstractWebsite

Abstract Pipelines and piping components may experience large cyclic deformations during a reduced number of cycles (Ni = 1�100 cycles), when subjected to extreme cyclic loading events (e.g. hurricanes, support settlements, earthquakes). In accordance with these loading scenarios, a lateral movement can be applied to the pipeline inducing bending stresses that gradually promotes strain localization, due to progressive plastic instabilities (buckling), damage evolution and final failure. This work aims at characterizing ultra-low cycle fatigue (ULCF) behaviour of the \{X52\} piping steel under bending and local buckling state. An experimental program was carried out to derive \{ULCF\} data for smooth, notched and flat-grooved specimen geometries under cyclic bending. Furthermore, the small-scale tests were simulated in ABAQUS� with the objective of computing the parameters governing the fatigue damage models. The classical Coffin-Manson strain-life relation commonly used in the low cycle fatigue (LCF) regime is proposed to model the fatigue lives. In addition, the Xue model, particularly dependent of the monotonic fracture strain was also used for the prediction of the number of cycles until the crack initiation. The numerical data obtained with these models are compared, being achieved similar fatigue lives predictions for notched plane specimens. For the case of flat-grooved specimens which provides plain strain conditions, an overestimation from the Coffin-Manson relation was observed while the Xue model reproduces very good results for both specimens' series.

Pereira, João Luís, José Xavier, Bahman Ghiassi, José Lousada, and José Morais. "On the identification of earlywood and latewood radial elastic modulus of Pinus pinaster by digital image correlation: A parametric analysis." The Journal of Strain Analysis for Engineering Design. 53 (2018): 566-574. AbstractWebsite

This work addresses the reconstruction of strain gradient fields at the wood growth ring scale from full-field deformation measurements provided by digital image correlation. Moreover, the spatial distribution of the earlywood and latewood radial modulus of elasticity is assessed. Meso-scale tensile tests are carried out on Pinus pinaster Ait. wooden specimens oriented in the radial–tangential plane under quasi-static loading conditions. A parametric analysis of the two-dimensional digital image correlation extrinsic and intrinsic setting parameters is performed, in a balance between spatial resolution and resolution. It is shown that the parametric module is an effective way to quantitatively support the choice of digital image correlation parameters in the presence of the high deformation gradient fields generated by the structure–property relationships at the scale of observation. Under the assumption of a uniaxial tensile stress state, the spatial distribution of the radial elastic modulus across the growth rings is obtained. It is observed that the ratio of the radial modulus of elasticity between latewood and earlywood tissues can vary significantly as a function of the digital image correlation parameters. It is pointed out, however, that a convergence value can be systematically established. Effectively, earlywood and latewood stress–strain curves are obtained and elastic properties are determined assuming the converged digital image correlation setting parameters.

Pereira, J. C. R., A. M. P. de Jesus, J. Xavier, and A. A. Fernandes. "Ultra low-cycle fatigue behaviour of a structural steel." Engineering Structures. 60 (2014): 214-222. AbstractWebsite
n/a
Pereira, F. A. M., M. F. S. F. de Moura, N. Dourado, J. J. L. Morais, J. Xavier, and M. I. R. Dias. "Direct and inverse methods applied to the determination of mode I cohesive law of bovine cortical bone using the DCB test." International Journal of Solids and Structures. 128 (2017): 210-220. AbstractWebsite

Abstract This work addresses the determination of the cohesive law under mode I loading of bovine cortical bone tissue using the Double Cantilever Beam (DCB) test. Direct and inverse methods were proposed to assess the cohesive laws representative of bone fracture under mode I loading. The direct method combines the evolution of the strain energy release rate under mode I loading with the crack tip opening displacement that is monitored by digital image correlation technique. According to this method, the cohesive law is obtained by differentiation of such relation with respect to the crack opening. The inverse procedure is performed through a finite element analysis including cohesive zone modelling, conjointly with a developed optimization algorithm. This identification strategy does not require a pre-established shape of the cohesive law as with the conventional inverse based procedures, which is viewed as a novelty of this work. It was concluded that both methods provide consistent results, being appellative tools concerning systematic and methodical studies dedicated to bone fracture characterization.

Pereira, J., J. Xavier, J. Morais, and J. Lousada. "Assessing wood quality by spatial variation of elastic properties within the stem: Case study of Pinus pinaster in the transverse plane." Canadian Journal of Forest Research. 44 (2014): 107-117. Abstract
n/a
Pereira, B., J. Xavier, F. Pereira, and J. Morais. "Identification of transverse elastic properties of the diaphysis of cortical bone." Journal of Mechanical Engineering and Biomechanics. 2 (2018): 50-55. AbstractWebsite
n/a
Pereira, J. C. R., A. M. P. de Jesus, J. Xavier, J. A. F. O. Correia, L. Susmel, and A. A. Fernandes. "Low and ultra-low-cycle fatigue behavior of X52 piping steel based on theory of critical distances." International Journal of Fatigue (2020): 105482. AbstractWebsite

The cyclic failure observed in structural components such as pipelines subjected to extreme loading conditions highlights some limitations concerning the application of existing fatigue damage models. The evaluation and prediction of this type of failure in these steel components under large-scale plastic yielding associated with high levels of stress triaxiality are not sufficiently known nor explored. This fatigue domain is conventionally called ultra-low-cycle fatigue (ULCF) and damage features are representative of both low-cycle fatigue (LCF) and monotonic ductile fracture. Thus, in order to understand the ULCF damage mechanisms both monotonic and LCF tests are required to get representative bounding damage information to model the material damage behaviour under such extreme loading conditions. This paper aims at exploring the Theory of Critical Distances (TCD) in the LCF and ULCF fatigue regimes, including the application of the point, line and area methods. The application of the TCD theories has not been explored so far in the ULCF fatigue regimes, despite its promising results in the LCF and high-cycle fatigue. An experimental program was carried out on several specimens’ geometries made of X52 piping steel. In detail, smooth plane specimens and notched plane specimens were cyclic loaded under tension/compression loading in order to obtain fatigue lives within the range of 101-104 cycles. In addition, cyclic bending tests on notched plane specimens were also incorporated in this study. Finite element simulations of all small-scale tests were conducted allowing to derive elastoplastic stress/strain fields along the potential crack paths. The numerical data were subjected to a post-processing in order to find characteristic lengths that can be treated as a fatigue property according to the TCD. A unified strain-life relation is proposed for the X52 piping steel together with a characteristic material length, consisting of a practical relation for pipeline strain-based design under extreme cyclic loading conditions.

Pereira, F. A. M., M. F. S. F. de Moura, N. Dourado, J. J. L. Morais, J. Xavier, and M. I. R. Dias. "Determination of mode II cohesive law of bovine cortical bone using direct and inverse methods." International Journal of Mechanical Sciences. 138-139 (2018): 448-456. AbstractWebsite

This study presents two alternative methods to determine the cohesive law of bovine cortical bone under mode II loading, employing the End Notched Flexure (ENF) test. The direct method results from the combination of the progress of the mode II strain energy release rate with the crack tip shear displacement, obtained by digital image correlation. The resulting cohesive law is determined by differentiation of this relation relatively to the crack shear displacement. The inverse method employs finite element analyses with cohesive zone modelling, in association with an optimization procedure. The resulting strategy enables determining the cohesive law without establishing a pre-defined shape. The significant conclusion that comes out of this work is that both methods offer consistent results regarding the estimation of the cohesive law in bone. Given that the inverse method dispenses the use of sophisticated equipment to obtain the cohesive law in bone, it can be used as a more convenient procedure to accomplish efficient studies in the context of bone fracture characterization under mode II loading.

Pinto, V. C., Tiago Ramos, Sofia Alves, J. Xavier, Paulo Tavares, P. M. G. P. Moreira, and Rui Miranda Guedes. "Comparative Failure Analysis of PLA, PLA/GNP and PLA/CNT-COOH Biodegradable Nanocomposites thin Films." Procedia Engineering. 114 (2015): 635-642. AbstractWebsite

Abstract Biodegradable polymers such as poly(lactic) acid (PLA) have been studied for biomaterials applications such as natural human ligament replacement, however these materials could be applied to other sectors as aerospace, aeronautics, automotive, food packaging. \{PLA\} presents a relatively brittle with a mode I fracture behavior, being often blend with other biodegradable or non-degradable polymers to improve its fracture energy. For some existing applications, \{PLA\} components exhibit accumulated permanent deformation resulting from dynamic mechanical inputs, resulting on failure by laxity of parts. Aiming the improvement of \{PLA\} mechanical properties, the inclusion of carbon nanofillers into \{PLA\} matrix, in particular, CNT-COOH and \{GNP\} have been developed, due to their strong sp2 carbon-carbon bondings and their geometric arrangement that enhance mechanical properties of the polymer matrix. \{PLA\} and nanocomposites were produced by melt blending followed by compression molding in a hot press, with small weight percentages of nanofillers added to the matrix. Quasi static tensile tests were performed on a mechanical testing machine (Instron™ ElectroPuls E1000) along with failure analysis of specimens with centered crack with digital image correlation, revealing strain distribution along specimens.

Pinto, V. C., T. Ramos, A. S. F. Alves, J. Xavier, P. J. Tavares, P. M. G. P. Moreira, and R. M. Guedes. "Dispersion and failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites by SEM and DIC inspection." Engineering Failure Analysis. 71 (2017): 63-71. AbstractWebsite

Biodegradable polymers such as PLA have been studied for medical applications, human ligament repair is one of such cases. However, these materials can be applied in other sectors as aerospace, aeronautics, automotive, food packaging. PLA presents a relatively brittle on the mode I fracture behavior, being often blend with other biodegradable or non-degradable polymers to improve its fracture energy. For some existing applications, PLA components exhibit accumulated permanent deformation resulting from dynamic mechanical inputs, resulting on failure by laxity of parts. Aiming the improvement of PLA mechanical properties, the inclusion of carbon nanofillers into PLA matrix, in particular, CNT-COOH and GNP have been developed, due to their strong sp2 carbon-carbon bondings and their geometric arrangement that enhance mechanical properties of the polymer matrix. PLA and nanocomposites were produced by melt blending followed by compression moulding in a hot press, with small weight percentages of nanofillers added to the matrix. Nanocomposites dispersion was evaluated by SEM. Quasi static tensile tests were performed on a mechanical testing machine (Instron� ElectroPuls E1000) along with strain field measurements of specimens with centred crack with digital image correlation, revealing strain distribution along specimens.