Publications

Export 47 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Cabral, I., Caeiro F., & Gomes M. I. (2022).  On the comparison of several classical estimators of the extreme value index. Communications in Statistics - Theory and Methods. 51, 179-196., Number 1 Abstract
n/a
Cabral, I., Caeiro F., & Gomes I. M. (2016).  Reduced bias Hill estimators. International Conference of Computational Methods in Sciences and Engineering 2016, ICCMSE 2016. 1790, , 2016/12/6: American Institute of Physics Inc. Abstract

For heavy tails, classical extreme value index estimators, like the Hill estimator, are usually asymptotically biased. Consequently those estimators are quite sensitive to the number of top order statistics used in the estimation. The recent minimum-variance reduced-bias extreme value index estimators enable us to remove the dominant component of asymptotic bias and keep the asymptotic variance of the new estimators equal to the asymptotic variance of the Hill estimator. In this paper a new minimum-variance reduced-bias extreme value index estimator is introduced, and its non degenerate asymptotic behaviour is studied. A comparison with another important minimum-variance reduced-bias extreme value index estimator is also provided.For heavy tails, classical extreme value index estimators, like the Hill estimator, are usually asymptotically biased. Consequently those estimators are quite sensitive to the number of top order statistics used in the estimation. The recent minimum-variance reduced-bias extreme value index estimators enable us to remove the dominant component of asymptotic bias and keep the asymptotic variance of the new estimators equal to the asymptotic variance of the Hill estimator. In this paper a new minimum-variance reduced-bias extreme value index estimator is introduced, and its non degenerate asymptotic behaviour is studied. A comparison with another important minimum-variance reduced-bias extreme value index estimator is also provided.

Cabral, I., Caeiro F., & Gomes I. M. (2016).  Redução do viés do estimador de Hill: uma nova abordagem. Estatística: Progressos e Aplicações. 73 - 84., 2016/11 Abstract
n/a
Caeiro, F., & Gomes M. I. (2005).  Uma classe de estimadores do parâmetro de escala de segunda ordem.. Actas do XII Congresso Anual da Sociedade Portuguesa de Estatística. 113-124., Évora, Portugalcaeirof-spe2004.pdf
Caeiro, F., & Gomes I. M. (2015).  Revisiting the maximum likelihood estimation of a positive extreme value index. Journal Of Statistical Theory And PracticeJournal Of Statistical Theory And Practice. 9(1), 200 - 218., 2015/1/13 AbstractWebsite

In this article, we revisit Feuerverger and Halls maximum likelihood estimation of the extreme value index. Based on those estimators we propose new estimators that have the smallest possible asymptotic variance, equal to the asymptotic variance of the Hill estimator. The full asymptotic distributional properties of the estimators are derived under a general third-order framework for heavy tails. Applications to a real data set and to simulated data are also presented.In this article, we revisit Feuerverger and Halls maximum likelihood estimation of the extreme value index. Based on those estimators we propose new estimators that have the smallest possible asymptotic variance, equal to the asymptotic variance of the Hill estimator. The full asymptotic distributional properties of the estimators are derived under a general third-order framework for heavy tails. Applications to a real data set and to simulated data are also presented.

Caeiro, F., Henriques-Rodrigues L. {\'ı}gia, Gomes I. M., & Cabral I. (2020).  Minimum-variance reduced-bias estimation of the extreme value index: A theoretical and empirical study. Computational and Mathematical Methods. , may: Wiley AbstractWebsite
n/a
Caeiro, F., & Gomes I. M. (2002).  A class of asymptotically unbiased semi-parametric estimators of the tail index.. Test. 11, 345-364., Number 2 Abstract

{Summary: We consider a class of consistent semi-parametric estimators of a positive tail index $\gamma$, parameterized by a tuning or control parameter $\alpha$. Such a control parameter enables us to have access, for any available sample, to an estimator of $\gamma$ with a null dominant component of asymptotic bias, and with a reasonably flat mean squared error pattern, as a function of $k$, the number of top order statistics considered. Moreover, we are able to achieve a high efficiency relative to the classical Hill estimator [ıt B. M. Hill}, Ann. Stat. 3, 1163–1174 (1975; Zbl 0323.62033)], provided we may have access to a larger number of top order statistics than the number needed for optimal estimation through the Hill estimator.}

Caeiro, F., & Gomes D. S. R. P. (2015).  A log probability weighted moment estimator of extreme quantiles. Theory and Practice of Risk Assessment - ICRA5 2013. 136, 293 - 303., 2015: Springer New York LLC Abstract

In this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.In this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.

Caeiro, F. (2022).  Preface of the Session ?Computational Statistical Methods?. AIP Conference Proceedings. 2425, Abstract
n/a
Caeiro, F., & Gomes M. I. (2008).  Minimum-variance reduced-bias tail index and high quantile estimation.. REVSTAT. 6, 1-20., Number 1 Abstract

{Summary: Heavy tailed-models are quite useful in many fields, like insurance, finance, telecommunications, internet traffic, among others, and it is often necessary to estimate a high quantile, i.e., a value that is exceeded with a probability $p$, small. The semiparametric estimation of this parameter relies essentially on the estimation of the tail index, the primary parameter in statistics of extremes. Classical semi-parametric estimators of extreme parameters show usually a severe bias and are known to be very sensitive to the number $k$ of top order statistics used in the estimation. For $k$ small they have a high variance, and for large $k$ a high bias. Recently, new second-order ``shape'' and ``scale'' estimators allowed the development of second-order reduced-bias estimators, which are much less sensitive to the choice of $k$. Here we study, under a third order framework, minimum-variance reduced-bias (MVRB) tail index estimators, recently introduced in the literature, and dependent on an adequate estimation of second order parameters. The improvement comes from the asymptotic variance, which is kept equal to the asymptotic variance of the classical Hill estimator [ıt B. Hill}, Ann. Stat. 3, 1163–1174 (1975; Zbl 0323.62033)] provided that we estimate the second order parameters at a level of a larger order than the level used for the estimation of the first order parameter. The use of those MVRB tail index estimators enables us to introduce new classes of reduced-bias high quantile estimators. These new classes are compared among themselves and with previous ones through the use of a small-scale Monte Carlo simulation.}

Caeiro, F., & Mateus A. (2023).  A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution. Mathematics. 11, 1076., feb, Number 5: {MDPI} {AG} AbstractWebsite
n/a
Caeiro, F., & Gomes M. I. (2010).  An asymptotically unbiased moment estimator of a negative extreme value index.. Discuss. Math., Probab. Stat.. 30, 5-19., Number 1 Abstract

{Summary: We consider a new class of consistent semi-parametric estimators of a negative extreme value index, based on the set of the $k$ largest observations. This class of estimators depends on a control or tuning parameter, which enables us to have access to an estimator with a null second-order component of asymptotic bias, and with a rather interesting mean squared error, as a function of $k$. We study the consistency and asymptotic normality of the proposed estimators. Their finite sample behaviour is obtained through Monte Carlo simulation.}

Caeiro, F., Gomes M. I., & Henriques-Rodrigues L. (2013).  A location invariant probability weighted moment EVI-estimator. : Notas e Comunicações do CEAUL 30/20132013_30_port-ppwm-final.pdf
Caeiro, F., Gomes I. M., Beirlant J., & de Wet T. (2016).  Mean-of-order p reduced-bias extreme value index estimation under a third-order framework. ExtremesExtremes. 19(4), 561 - 589., 2016/12/1 AbstractWebsite

Reduced-bias versions of a very simple generalization of the ‘classical’ Hill estimator of a positive extreme value index (EVI) are put forward. The Hill estimator can be regarded as the logarithm of the mean-of-order-0 of a certain set of statistics. Instead of such a geometric mean, it is sensible to consider the mean-of-order-p (MOP) of those statistics, with p real. Under a third-order framework, the asymptotic behaviour of the MOP, optimal MOP and associated reduced-bias classes of EVI-estimators is derived. Information on the dominant non-null asymptotic bias is also provided so that we can deal with an asymptotic comparison at optimal levels of some of those classes. Large-scale Monte-Carlo simulation experiments are undertaken to provide finite sample comparisons.Reduced-bias versions of a very simple generalization of the ‘classical’ Hill estimator of a positive extreme value index (EVI) are put forward. The Hill estimator can be regarded as the logarithm of the mean-of-order-0 of a certain set of statistics. Instead of such a geometric mean, it is sensible to consider the mean-of-order-p (MOP) of those statistics, with p real. Under a third-order framework, the asymptotic behaviour of the MOP, optimal MOP and associated reduced-bias classes of EVI-estimators is derived. Information on the dominant non-null asymptotic bias is also provided so that we can deal with an asymptotic comparison at optimal levels of some of those classes. Large-scale Monte-Carlo simulation experiments are undertaken to provide finite sample comparisons.

Caeiro, F., & Gomes I. M. (2016).  Threshold Selection in Extreme Value Analysis. Extreme Value Modeling and Risk Analysis. 69 - 86., 2016/1/7: Chapman and Hall/CRC 2007 Abstract

The main objective of statistics of extremes is the prediction of rare events, and its primary problem has been the estimation of the extreme value index (EVI). Whenever we are interested in large values, such estimation is usually performed on the basis of the largest k + 1 order statistics in the sample or on the excesses over a high level u. The question that has been often addressed in practical applications of extreme value theory is the choice of either k or u, and an adaptive EVI-estimation. Such a choice can be either heuristic or based on sample paths stability or on the minimization of a mean squared error estimateas a function of k. Some of these procedures will be reviewed. Despite of thefact that the methods provided can be applied, with adequate modifications, to any real EVI and not only to the adaptive EVI-estimation but also to the adaptive estimation of other relevant right-tail parameters, we shall illustrate the methods essentially for the EVI and for heavy tails, i.e., for a positive EVI.The main objective of statistics of extremes is the prediction of rare events, and its primary problem has been the estimation of the extreme value index (EVI). Whenever we are interested in large values, such estimation is usually performed on the basis of the largest k + 1 order statistics in the sample or on the excesses over a high level u. The question that has been often addressed in practical applications of extreme value theory is the choice of either k or u, and an adaptive EVI-estimation. Such a choice can be either heuristic or based on sample paths stability or on the minimization of a mean squared error estimateas a function of k. Some of these procedures will be reviewed. Despite of thefact that the methods provided can be applied, with adequate modifications, to any real EVI and not only to the adaptive EVI-estimation but also to the adaptive estimation of other relevant right-tail parameters, we shall illustrate the methods essentially for the EVI and for heavy tails, i.e., for a positive EVI.

Caeiro, F., Cabral I., & Gomes I. M. (2018).  Improving Asymptotically Unbiased Extreme Value Index Estimation. Contributions to Statistics. 155–163.: Springer International Publishing Abstract
n/a
Caeiro, F., & Gomes M. I. (2007).  Second-order Reduced-bias Tail Index and High Quantile Estimation. 56th SESSION OF THE INTERNATIONAL STATISTICAL INSTITUTE. 109-116., Lisbon, Portugal2007isi_volume_lxii_proceedings_caeiro_gomes.pdf
Caeiro, F., Martins A. P., & Sequeira I. J. (2015).  Finite sample behaviour of classical and quantile regression estimators for the Pareto distribution. Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014, ICNAAM 2014. 1648, , 2015/3/10: American Institute of Physics Inc. Abstract

The Pareto distribution is a well known and important model in Statistics. It has been used to study large incomes, city population size, size of losses, stock price fluctuations, number of citations received by papers and other similar phenomena. In this work we compare the finite sample performance of several estimation methods, namely the Moment, Maximum Likelihood and Quantile Regression methods. The comparison will be made through a Monte-Carlo simulation study.The Pareto distribution is a well known and important model in Statistics. It has been used to study large incomes, city population size, size of losses, stock price fluctuations, number of citations received by papers and other similar phenomena. In this work we compare the finite sample performance of several estimation methods, namely the Moment, Maximum Likelihood and Quantile Regression methods. The comparison will be made through a Monte-Carlo simulation study.

Caeiro, F., & Henriques-Rodrigues L. (2019).  Reduced-bias kernel estimators of a positive extreme value index. Mathematical Methods in the Applied Sciences. 42, 5867-5880., Number 17 Abstract
n/a
Caeiro, F., & Gomes I. M. (2002).  Bias reduction in the estimation of parameters of rare events.. Theory of Stochastic Processes. 8(24), 67-76. Abstract2002tsp_caeiro_gomes.pdf

{Consider the distribution function $EV_{\gamma}(x)=\exp(-(1+\gamma x)^{- 1/\gamma}),\ \gamma>0,\ 1+\gamma x>0$, to which $\max(X_{1},łdots, X_{n})$ is attracted after suitable linear normalization. The authors consider the underlying model $F$ in the max-domain of attraction of $EV_{\gamma}$, where $ X_{i:n},\ 1łeq Iłeq n$, denotes the i-th ascending order statistic associated to the random sample $(X_{1},łdots, X_{n})$ from the unknown distribution function $F$. This article is devoted to studying semi-parametric estimators of $\gamma$ in the form $$\gamma_{n}^{(þeta,\alpha)}(k)=(\Gamma(\alpha)/M_{n}^{(\alpha- 1)}(k))łeft(M_{n}^{(þeta\alpha)}(k)/\Gamma(þeta\alpha+1)\right) ^{1/þeta},\quad \alpha\geq 1,\quad þeta>0,$$ parametrized by the parameters $\alpha$ and $þeta$, which may be controlled, where $M_{n}^{(0)}=1$ and $ M_{n}^{(\alpha)}(k)=k^{-1}\sum_{i=1}^{k}(łn X_{n-i+1:n}-łn X_{n-k:n})^{\alpha}$, $\alpha>0$, is a consistent estimator of $\Gamma(\alpha+1)\gamma^{\alpha}$, as $k\toınfty$, and $k=o(n)$, as $n\toınfty$.\par The authors derive the asymptotic distributional properties of the considered class of estimators and obtain that for $þeta>1$ it is always possible to find a control parameter $\alpha$ which makes the dominant component of the asymptotic bias of the proposed estimator null and depends on the second order parameter $\rho$. An investigation of the $\rho$-estimator is presented.}

Caeiro, F., & Gomes I. M. (2015).  Bias reduction in the estimation of a shape second-order parameter of a heavy-tailed model. Journal Of Statistical Computation And SimulationJournal Of Statistical Computation And Simulation. 85(17), 3405 - 3419., 2015 AbstractWebsite

In extreme value theory, the shape second-order parameter is a quite relevant parameter related to the speed of convergence of maximum values, linearly normalized, towards its limit law. The adequate estimation of this parameter is vital for improving the estimation of the extreme value index, the primary parameter in statistics of extremes. In this article, we consider a recent class of semi-parametric estimators of the shape second-order parameter for heavy right-tailed models. These estimators, based on the largest order statistics, depend on a real tuning parameter, which makes them highly flexible and possibly unbiased for several underlying models. In this article, we are interested in the adaptive choice of such tuning parameter and the number of top order statistics used in the estimation procedure. The performance of the methodology for the adaptive choice of parameters is evaluated through a Monte Carlo simulation study.In extreme value theory, the shape second-order parameter is a quite relevant parameter related to the speed of convergence of maximum values, linearly normalized, towards its limit law. The adequate estimation of this parameter is vital for improving the estimation of the extreme value index, the primary parameter in statistics of extremes. In this article, we consider a recent class of semi-parametric estimators of the shape second-order parameter for heavy right-tailed models. These estimators, based on the largest order statistics, depend on a real tuning parameter, which makes them highly flexible and possibly unbiased for several underlying models. In this article, we are interested in the adaptive choice of such tuning parameter and the number of top order statistics used in the estimation procedure. The performance of the methodology for the adaptive choice of parameters is evaluated through a Monte Carlo simulation study.

Caeiro, F., Henriques-Rodrigues L. {\'ı}gia, & Gomes I. M. (2022).  The Use of Generalized Means in the Estimation of the Weibull Tail Coefficient. (Anil Kumar, Ed.).Computational and Mathematical Methods. 2022, 1–12., jun: Hindawi Limited AbstractWebsite
n/a
Caeiro, F., & Gomes M. I. (2006).  A new class of estimators of a ``scale'' second order parameter.. Extremes. 9, 193-211., Number 3-4 Abstract

{Let $X_i$ be i.i.d. r.v.s with heavy-tailed CDF $F(x)$ such that $$1-F(x)=(x/C)^{-1/\gamma}((1+(\beta/\rho)(x/C)^{\rho/\gamma} +\beta'(x/C)^{2\rho/\gamma}(1+o(1))),$$ where $\gamma$ is the tail index ($\gamma>0$), and $\rho<0$ and $\beta$ are the ``second order parameters''. The authors construct an estimator for $\beta$ based on the ``tail moments'' $$M_n^{(\alpha)}=(k)^{-1}\sum_{i=1}^k [łog X_{n-i+1:n}-łog X_{n-k:n}]^\alpha. $$ Consistency and asymptotic normality of the estimator are demonstrated. The small sample properties of the estimator are investigated via simulations.}