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Abstract

We make use of probability weighted moments of largest obser-
vations, in order to build classes of estimators of the extreme value
index. Due to the specificity of the estimators, we propose the use of
bootstrap computer intensive methods for an adaptive choice of the
optimal number of order statistics to be used in the estimation. The
methodology is applied to data in the field of insurance.

1 Introduction and preliminaries

The extreme value index (EVI) is the real parameter γ in the general ex-
treme value (EV) distribution function (d.f.), Gγ(x) := exp(−(1+γx)−1/γ),
1 + γx > 0. Let Xn = (X1, . . . , Xn) denote a random sample of size n,
and consider the associated sample of ascending order statistics (o.s.’s)
(X1:n ≤ · · · ≤ Xn:n). One of the first classes of semi-parametric es-
timators of a positive EVI was the Hill (H) estimator ([4]), given by
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γ̂Hk,n :=
∑k

i=1 {lnXn−i+1:n − lnXn−k:n} /k, k = 1, 2, . . . , n − 1. We shall
also deal with the Pareto probability weighted moments (PPWM) EVI-
estimators, recently introduced in [1]. They are valid for 0 < γ < 1,
compare favourably with the Hill estimator, and are given by

γ̂PPWM
k,n := 1− â1(k)/

(
â0(k)− â1(k)

)
, (1)

with â0(k) :=
∑k

i=1Xn−i+1:n/k and â1(k) :=
∑k

i=1(i/k) Xn−i+1:n/k. Con-
sistency of these EVI-estimators is achieved if Xn−k:n is an intermediate
o.s., i.e., if k = kn →∞ and k/n → 0, as n → ∞. In order to derive
the asymptotic normality of these EVI-estimators, and with the notation
U(t) := inf {x : F (x) ≥ 1− 1/t}, t ≥ 1, it is often assumed the validity of
a second-order condition, like limt→∞

(
lnU(tx)− lnU(t)− γ lnx

)
/A(t) =

(xρ − 1)/ρ, where |A| ∈ RVρ, ρ ≤ 0. Under such a second-order framework,
if
√
kA(n/k) → λA , finite, as n→∞, these EVI-estimators are asymptot-

ically normal. Denoting γ̂•k,n, any of the estimators above, we have, with
Z•k asymptotically standard normal and for adequate (b•, σ•) ∈ (R, R+),

γ̂•k,n
d= γ + σ•Z

•
k/
√
k + b• A(n/k)(1 + op(1)), as n→∞. (2)

After a review, in Section 2, of the role of the bootstrap methodology
in the estimation of optimal sample fractions, we provide a reference to
an algorithm for the adaptive estimation through the Hill estimators, also
valid for the PPWM EVI-estimators. In Section 3, as an illustration, we
apply such a data-driven estimation to a data set in the field of insurance.

2 The bootstrap methodology and optimal levels

Under the above mentioned second-order framework, with ρ < 0, let us use
the parameterization A(t) = γβtρ, where β and ρ are generalized scale and
shape second-order parameters. Given the EVI-estimator, γ̂•k,n, let us de-

note kγ̂
•

0 (n) := arg mink MSE(γ̂•k,n), with MSE standing for mean squared
error. With E denoting the mean value operator and AMSE standing
for asymptotic mean squared error, a possible substitute for MSE(γ̂•k,n) is

AMSE(γ̂•k,n) := E
(
σ• Zk/

√
k + b•A(n/k)

)2 = σ2
•/k + b2• γ

2 β2 (n/k)2ρ, cf.
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equation (2). Then, with the notation k0|γ̂•(n) := arg mink AMSE
(
γ̂•k,n

)
,

we get k0|γ̂•(n) = kγ̂
•

0 (n)(1 + o(1)). For the Hill estimator, we have, in (2),
(bH , σH ) = (1/(1− ρ), γ). Consequently, with (β̂, ρ̂) a consistent estimator
of (β, ρ) and [x] denoting the integer part of x, we have an asymptotic
justification for the estimator k̂H0 := [((1− ρ̂)2n−2ρ̂/(−2ρ̂β̂2))1/(1−2ρ̂)] + 1.
The same does not happen with the PPWM EVI-estimators, due to the
fact that σPPWM and bPPWM depend both on γ. It is sensible to use the
bootstrap methodology for the adaptive PPWM EVI-estimation. Simi-
larly to what has been done in [3], for the H estimator, we can use the
algorithm in [2], considering the auxiliary statistic, T •k,n := γ̂•[k/2],n − γ̂

•
k,n,

k = 2, . . . , n − 1, which converges to the known value zero, and double-
bootstrap it adequately on the basis of samples of sizes n1 = o(n) and
n2 = [n2

1/n], in order to estimate k0|γ̂•(n), through a bootstrap estimate
k̂•0∗. Note also that bootstrap confidence intervals (CIs) are easily asso-
ciated with the bootstrap EVI-estimates, through the replication of the
above-mentioned algorithm r times.

3 A case study

We shall next consider an illustration of the performance of the adaptive
PPWM EVI-estimates under study, comparatively with the same methodol-
ogy applied to the Hill EVI-estimates, again through the analysis of n = 371
automobile claim amounts exceeding 1,200,000 Euro over the period 1988-
2001, gathered from several European insurance companies co-operating
with the same re-insurer, Secura Belgian Re. The above-mentioned al-
gorithm led us to ρ̂0 = −0.74 and β̂0 = 0.80. For a sub-sample size
n1 = [n0.955] = 284, and B = 250 bootstrap generations, we were led
to k̂PPWM

0∗ = 58 and to PPWM∗ = 0.272. This same algorithm applied to
the Hill estimates leads us to k̂H0∗ = 52 and to H∗ = 0.299.

In Figure 1, as a function of the sub-sample size n1, ranging from n1 =
[n0.95] = 275 until n1 = [n0.9999] = 370, we picture, at the left, the estimates
k̂0∗(n1)/n of the optimal sample fraction (OSF), k•0/n, for the adaptive
bootstrap estimation of γ through the Hill and the PPWM estimators.
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Associated bootstrap EVI-estimates are pictured at the right. Contrarily
to the bootstrap Hill, the bootstrap PPWM EVI-estimates are quite stable
as a function of the sub-sample size n1 (see Figure 1, right).
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Figure 1: Estimates of the OSF’s k̂•0/n (left) and the bootstrap adaptive extreme value index
estimates γ̂•∗ (right), as functions of the sub-sample size n1, for the SECURA data.

The running of the above mentioned algorithm r = 100 times, for n1 =
[n0.955], provided, for the PPWM-estimates, a median 0.2726, an average
0.2725, and a 95% bootstrap CI for γ given by (0.271, 0.273), as shown in
Figire 1. The equivalent indicators for the bootstrap Hill estimates were
0.2969, 0.2949 and (0.282, 0.314), also shown in Figure 1. The size of the
CIs are in favour of the PPWM estimation. Indeed, the H-estimates are
clearly over-estimating the true value of the EVI, and should be used with
care.
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