Bias reduction in the estimation of parameters of rare events.

Citation:
Caeiro, F., & Gomes I. M. (2002).  Bias reduction in the estimation of parameters of rare events.. Theory of Stochastic Processes. 8(24), 67-76.

Abstract:

{Consider the distribution function $EV_{\gamma}(x)=\exp(-(1+\gamma x)^{- 1/\gamma}),\ \gamma>0,\ 1+\gamma x>0$, to which $\max(X_{1},łdots, X_{n})$ is attracted after suitable linear normalization. The authors consider the underlying model $F$ in the max-domain of attraction of $EV_{\gamma}$, where $ X_{i:n},\ 1łeq Iłeq n$, denotes the i-th ascending order statistic associated to the random sample $(X_{1},łdots, X_{n})$ from the unknown distribution function $F$. This article is devoted to studying semi-parametric estimators of $\gamma$ in the form $$\gamma_{n}^{(þeta,\alpha)}(k)=(\Gamma(\alpha)/M_{n}^{(\alpha- 1)}(k))łeft(M_{n}^{(þeta\alpha)}(k)/\Gamma(þeta\alpha+1)\right) ^{1/þeta},\quad \alpha\geq 1,\quad þeta>0,$$ parametrized by the parameters $\alpha$ and $þeta$, which may be controlled, where $M_{n}^{(0)}=1$ and $ M_{n}^{(\alpha)}(k)=k^{-1}\sum_{i=1}^{k}(łn X_{n-i+1:n}-łn X_{n-k:n})^{\alpha}$, $\alpha>0$, is a consistent estimator of $\Gamma(\alpha+1)\gamma^{\alpha}$, as $k\toınfty$, and $k=o(n)$, as $n\toınfty$.\par The authors derive the asymptotic distributional properties of the considered class of estimators and obtain that for $þeta>1$ it is always possible to find a control parameter $\alpha$ which makes the dominant component of the asymptotic bias of the proposed estimator null and depends on the second order parameter $\rho$. An investigation of the $\rho$-estimator is presented.}

Notes:

n/a

PreviewAttachmentSize
2002tsp_caeiro_gomes.pdf388.81 KB