Publications

Export 66 results:
Sort by: Author Title [ Type  (Desc)] Year
Thesis
Cismaşiu, C. The hybrid-{T}refftz Displacement Element for Static and Dynamic Structural Analysis Problems. Lisboa, Portugal: Instituto Superior Técnico, 2000. Abstract

The displacement model of the hybrid-{T}refftz finite element formulation is applied to the solution of geometrically and physically linear static and dynamic problems. As the approximation bases solve locally the governing system of differential equations, the errors in the approximation affect only the implementation of the boundary conditions. Potential and elastostatic problems are used to illustrate the enforcement of the boundary conditions and the convergence of the solutions in energy, stresses and displacements, under both p- and h-refinement sequences and their insensitivity to mesh distortion, incompressibility and positioning of the coordinate system of the approximation basis. Also illustrated is the use of elements with arbitrary geometry and the efficiency that can be reached by including in the bases the solutions associated with dominant local effects, in particular those associated with singular stress fields. An adaptive p-refinement algorithm that exploits the naturally hierarchical nature of the approximation bases is presented and assessed. The formulation is generalised for elastodynamic analysis in the frequency domain of both bounded and unbounded domains, which are modelled either with absorbing boundary conditions or with semi-infinite elements that satisfy the Sommerfeld condition. The performance of the formulation is illustrated with tests on the convergence of the solutions in energy, stresses and displacements and on their insensitivity to mesh distortion, wave length and position of the absorbing boundary, for a wide spectrum of forcing frequencies and under both p- and h-refinement sequences.

Miscellaneous
Journal Article
Freitas, J. A. T., and C. Cismaşiu. "Adaptive p-refinement of hybrid-{T}refftz finite element solutions." Finite Elements in Analysis and Design. 39 (2003): 1095-1121. Abstract

An adaptive p-refinement procedure for the implementation of the displacement model of the hybrid-{T}refftz finite element formulation is presented. The procedure is designed to select and implement automatically the degrees of freedom in the domain (displacements) and on the boundary (surface forces) of the element to attain a prescribed level of accuracy. This accuracy is measured on the strain energy of the system for a prescribed finite element mesh. Local measures of error can be easily accounted for. The performance of the adaptive procedure suggested is illustrated using two-dimensional potential problems.

Amarante dos Santos, Filipe, and Corneliu Cismaşiu. "Adaptive underslung beam using shape-memory alloys for frequency-tuning." Journal of Intelligent Material Systems and Structures (2016). AbstractWebsite

The present article addresses the study of an adaptive-passive beam structure with a shape-memory alloy based actuator. In order to mitigate adverse dynamic effects resulting from externally induced vibrations, the structure is able to automatically tune its natural frequency to avoid resonance. The adaptive-passive beam configuration is based on an underslung cable-stayed girder concept. Its frequency tuning is achieved by temperature modulation of the shape-memory alloy elements through a closed-loop control process based on a proportional-integral-derivative algorithm. The effectiveness of the proposed control solution is substantiated by numerical simulations and experimental tests on a small-scale prototype. The validated numerical model enables the simulation of the proposed control approach in a real-scale footbridge, subjected to a prescribed pedestrian loading. The results are very encouraging and show that, by activating the shape-memory alloy elements, the system is able to successfully shift its natural frequency and to mitigate the effects of induced vibrations.

Cismasiu, C., A. P. Ramos, I. D. Moldovan, D. F. Ferreira, and J. B. Filho. "Applied element method simulation of experimental failure modes in RC shear walls." Computers and Concrete. 19.4 (2017): 365-374.
G, Gomes, Lúcio V, Cismasiu C, and Rebelo H. B. "Blast Assessment - uma metodologia de avaliação." Construção Magazine.86 (2018): 18-23.
Freitas, J. A. T., C. Cismasiu, and Z. M. Wang. "Comparative analysis of hybrid-Trefftz stress and displacement elements." Archives of Computational Methods in Engineering. State of the art reviews. 6.1 (1999): 35-39.
dos Santos, Amarante F. P., and C. Cismasiu. "Comparison Between Two SMA Constitutive Models for Seismic Applications." Journal of Vibration and Control. 16 (2010): 897-914. AbstractWebsite

This paper analyses and compares the dynamic behavior of superelastic shape memory alloy (SMA) systems based on two different constitutive models. The first model, although being able to describe the response of the material to complex uniaxial loading histories, is temperature and rate independent. Thesecond model couples the mechanical and kinetic laws of the material with a balance equation considering the thermal effects. After numerical validation and calibration, the behavior of these two models is tested in single degree of freedom dynamic systems, with SMAs acting as restoring elements. Different dynamic loads are considered, including artificially generated seismic actions, in a numerical model of a railway viaduct. Finally, it is shown that, in spite of its simplicity, the temperature- and rate-independent modelproduces a set of very satisfying results. This, together with its robustness and straightforward computational implementation, yields a very appealing numerical tool to simulate superelastic passive control applications.

Amarante dos Santos, Filipe, Corneliu Cismasiu, and Francisco Braz Fernandes. "Cyclic Instability of Shape-Memory Alloys in Seismic Isolation Systems." International Journal of Structural Glass and Advanced Materials Research (2018): 1-14.
de Gomes, Gabriel Jesus, Valter José Guia da Lúcio, and Corneliu Cismasiu. "Development of a high-performance blast energy-absorbing system for building structures." International Journal of Protective Structures. 15.3 (2024): 484-508. AbstractWebsite

Shock absorbers have been widely used in the automotive and aeronautical industries for many years. Inspired on these devices, the paper presents an analytical and numerical assessment of a high performance protective system for building structures against blast loads, which is composed of a shielding element connected to the main structure, at the floor levels, through ductile Energy Absorbing Connectors (EACs). The EACs exploit the external tube inversion mechanism to absorb a significant part of the imparted kinetic energy from the blast wave. While the system prototype has been developed in laboratory, it was characterized and tested in a full-scale blast testing campaign. A validated finite element model was used next to analyze its performance in a more demanding design scenario. The introduction of EACs notably reduces the peak horizontal loads and the kinetic energy transferred to the protected structure, being expected a significant reduction of the stresses in the supporting vertical elements, in addition to the protection of structural and non-structural members. These results encourage further studies of the presented protective system that can be potentially employed for a large variety of blast threat scenarios, especially when increasing the stand-off is not a possible/viable option and sensitive facilities have to be protected.

Freitas, J. A. T., and C. Cismaşiu. "Developments with hybrid-{T}refftz stress and displacement elements." Computer Assisted Mechanics and Engineering Sciences. 8 (2001): 289-311. Abstract

The paper reports on the work on hybrid-{T}refftz finite elements developed by the Structural Analysis Research Group, ICIST, Technical University of Lisbon. A dynamic elastoplastic problem is used to describe the technique used to establish the alternative stress and displacement models of the hybrid-{T}refftz finite element formulations. They are derived using independent time, space and finite element bases, so that the resulting solving systems are symmetric, sparse, naturally $p$-adaptive and particularly well suited to parallel processing. The performance of the hybrid-{T}refftz stress and displacement models is illustrated with a number of representative static and dynamic applications of elastic and elastoplastic structural problems.

Santos, Filipe, Corneliu Cismasiu, Ildi Cismasiu, and Chiara Bedon. "Dynamic Characterisation and Finite Element Updating of a RC Stadium Grandstand." Buildings. 8.10 (2018): 141, 1-19.
Rebelo, H. B., D. Lecompte, C. Cismasiu, A. Jonet, B. Belkassem, and A. Maazoun. "Experimental and numerical investigation on 3D printed PLA sacrificial honeycomb cladding." International Journal of Impact Engineering. 131 (2019): 162-173.Website
Cismaşiu, C., A. Narciso, and F. Amarante dos Santos. "Experimental Dynamic Characterization and Finite Element Updating of a Footbridge Structure." Journal of Performance of Constructed Facilities.10.1061/(ASCE)CF.1943-5509.0000615 (2014).Website
de Gomes, Gabriel Jesus, Valter José Guia da Lúcio, Corneliu Cismasiu, and José Luis Mingote. "Experimental Validation and Numerical Analysis of a High-Performance Blast Energy-Absorbing System for Building Structures." Buildings. 13.601 (2023): 1-20.
Rebelo, Hugo Bento, Filipe Amarante dos Santos, Corneliu Cismasiu, and Duarte Santos. "Exploratory study on geodesic domes under blast loads." International Journal of Protective Structures (2019).
de Freitas, J., I. Moldovan, and C. Cismaşiu. "Hybrid-Trefftz displacement element for poroelastic media." Computational Mechanics (2011): 1-15. AbstractWebsite

The elastodynamic response of saturated poroelastic media is modelled approximating independently the solid and seepage displacements in the domain and the force and pressure components on the boundary of the element. The domain and boundary approximation bases are used to enforce on average the dynamic equilibrium and the displacement continuity conditions, respectively. The resulting solving system is Hermitian, except for the damping term, and its coefficients are defined by boundary integral expressions as a Trefftz basis is used to set up the domain approximation. This basis is taken from the solution set of the governing differential equation and models the free-field elastodynamic response of the medium. This option justifies the relatively high levels of performance that are illustrated with the time domain analysis of unbounded domains.

Freitas, J. A. T., and C. Cismaşiu. "Hybrid-{T}refftz displacement element for spectral analysis of bounded and unbounded media." International Journal of Solids and Structures. 40 (2003): 671-699. Abstract

The hybrid-{T}refftz displacement element is applied to the elastodynamic analysis of bounded and unbounded media in the frequency domain. The displacements are approximated in the domain of the element using local solutions of the wave equation, the Neumann conditions are enforced directly and the surface forces are approximated on the Dirichlet and inter-element boundaries of the finite element mesh. Two alternative elements are developed to model unbounded media, namely a finite element with absorbing boundaries and an unbounded element that satisfies explicitly the Sommerfeld condition. The finite element equations are derived from the fundamental relations of elastodynamics written in the frequency domain. The numerical implementation of these equations is discussed and numerical tests are presented to assess the performance of the formulation.

Santos, F. A., H. Rebelo, M. Coutinho, L. S. Sutherland, C. Cismasiu, I. Farina, and F. Fraternali. "Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA vs. PETg." Composite Structures (2020): 113128. AbstractWebsite

This work studies the low-velocity impact response of 3D-printed layered structures made of thermoplastic materials (PLA and PETg), which form sacrificial claddings for impact protection. The analyzed structures are composed of crushable cellular cores placed in between terminal stiffening plates. The cores tessellate either honeycomb hexagonal unit cells, or hexagonal cells with re-entrant corners, with the latter exhibiting auxetic response. The given results highlight that the examined PETg protectors exhibit higher energy dissipation ratios and lower restitution coefficients, as compared to PLA structures that have the same geometry. It is concluded that PETg qualifies as an useful material for the fabrication of effective impact protection gear through ordinary, low-cost 3D printers.

Cismasiu, C., J. R. G. Ferreira, and H. B. Rebelo. "Modelação tridimensional de ondas de choque em LS-DYNA." Construção Magazine.86 (2018): 24-28.
Freitas, J. A. T., and C. Cismaşiu. "Numerical implementation of hybrid-{T}refftz displacement elements." Computers & Structures. 73 (1999): 207-225. Abstract

The numerical implementation of the displacement model of the hybrid-{T}refftz finite element formulation is presented. The geometry of the supporting element is not constrained a priori. Unbounded, non-convex and multiply connected elements can be used. The approximation basis is naturally hierarchical and very rich. It is constructed on polynomial solutions of the governing differential equation, and extended to include the particular terms known to model accurately important local effects, namely the singular stress patterns due to cracks or point loads. Numerical and semi-analytical methods are used to compute the finite element matrices and vectors, all of which present boundary integral expressions. Appropriate procedures to store, manipulate and solve symmetric highly sparse systems are used. The characteristics of the finite element solving system in terms of sparsity and conditioning are analysed, as well as its sensitivity to the effects of mesh distortion, incompressibility and rotation of the local reference systems. Benchmark tests are used also to illustrate the performance of the element in the estimation of displacements, stresses and stress intensity factors.

Silva, M. A. G., C. Cismaşiu, and C. G. Chiorean. "Numerical simulation of ballistic impact on composite laminates." International Journal of Impact Engineering. 31 (2005): 289-306. Abstract

The paper reports experimental and numerical simulation of ballistic impact problems on thin composite laminated plates reinforced with Kevlar 29. Ballistic impact was imparted with simulated fragments designed in accordance with STANAG-2920 on plates of different thickness. Numerical modelling was developed and used to obtain an estimate for the limit perforation velocity V50 and simulate failure modes and damage. Computations were carried out using a commercial code based on nite differences and values obtained are compared with the experimental data to evaluate the performance of the simulation. Good correlation between computational simulation and experimental results was achieved, both in terms of deformation and damage of the laminates. Future work is advanced to include the interposition of an outer ceramic layer as well as examining the influence of dry-wet and temperature cycles on the mechanical strength of the plates and their temporal evolution under accelerated ageing.