Confinement

Lateral cyclic behaviour of RC columns confined with carbon fibres, Faustino, Pedro, Frade Pedro, and Chastre Carlos , Structures, February 2016, Volume 5, p.196-206, (2016) AbstractWebsite

Reinforced concrete (RC) columns with various strengthening systems and different conditions were tested to cyclic lateral and axial loading for the purpose of performance assessment. Tests included confinement strengthening with carbon-fiber-reinforced polymer (CFRP) sheets, longitudinal strengthening with CFRP laminates and confining CFRP jacket, longitudinal strengthening with stainless steel bars and confining CFRP jacket, tested column until reinforcing steel failure, repair and CFRP confining jacket, and longitudinal strengthening with stainless steel bars. The analysis of the tests results as to load-displacement relationship and energy dissipation led to the conclusion that the use of external longitudinal strengthening with CFRP confinement is effective for performance retrofitting and upgrading, and viable in terms of execution. The load capacity increase due to strengthening reached 36–46% with good ductile behaviour. Nonlinear numerical modelling was carried out using two approaches which represent reasonably well the global performance of the studied columns for the prediction of the ascending load-displacement relationship and the peak load values in each cycle.

Damage Effect on Concrete Columns Confined with Carbon Composites, Faustino, Pedro, and Chastre Carlos , ACI Structural Journal, Volume 113, Number 4, (2016) AbstractWebsite

Five experimental cyclic tests were carried out on reinforced concrete rectangular columns with rounded corners, different condition (new and damaged) and different strengthening systems: that included confinement through carbon fiber (CFRP) jackets, anchor dowels, high strength repair mortar and external longitudinal stainless steel bars. Lateral load - displacement relationship, energy dissipation, ductility and curvature results were analyzed together with two different damage assessment classifications. The overall evaluation concludes that the use of external confinement with CFRP on RC columns is viable and of effective performance enhancement alone and combined with other techniques. Damaged columns that were retrofitted showed an increased load capacity up to 20% along with good ductile behavior within the limits of the US, European, Canadian and Japanese codes, with minor/moderate degree of damage at 1% drift ratio and moderate degree of damage at 2% drift ratio.

Design model for square RC columns under compression confined with CFRP, Faustino, Pedro, Chastre Carlos, and Paula Raquel , Composites Part B: Engineering, Volume 57, Issue February, p.187-198, (2014) Abstractfaustino_chastre_et_al._2014.pdfWebsite

The enhancement of the mechanical behaviour of reinforced concrete (RC) columns with regard to axial compression is an up-to-date concern, namely if the strengthening of existing structures is to be considered. In view of this, external confinement with FRP systems has been tested in order to become a feasible technique, since it seems to have important advantages over other systems such as its high strength and stiffness in relation to weight and its improvement of strength and ductility while confining RC columns. Square columns confined with FRP show a more complex interpretation of their behaviour, when compared to circular columns. Accordingly, the present work includes the analysis of two experimental programs regarding axial compression on CFRP confined RC columns: one on circular and square specimens with different corner radii; the other on square specimens with side lengths ranging from medium to large. Based on this, modelling equations are proposed to predict maximum axial load, axial strain and lateral strain, as well as the entire behaviour until failure with curves of axial load-axial strain and axial load-lateral strain. The modelling results show that the analytical curves are in general agreement with the presented experimental curves for a wide range of dimensions.

Monotonic axial behavior and modelling of RC circular columns confined with CFRP, Chastre, Carlos, and Silva Manuel A. G. , Engineering Structures, Aug, Volume 32, Number 8, p.2268-2277, (2010) AbstractWebsite

The retrofit of reinforced concrete columns with FRP jackets has received considerable attention in recent years. The advantages of this technique compared to other similar techniques include the high strength-weight and stiffness-weight ratios of FRP (Fibre Reinforced Plastics), the strength and ductility increase of RC columns confined with FRP jackets as well as the fact that FRP external shells prevent or mitigate environmental degradation of the concrete and consequent corrosion of the steel reinforcement. Furthermore, this method also reduces the column transversal deformation and prevents the buckling of longitudinal reinforcement. Twenty five experimental tests were carried out on reinforced concrete columns confined with CFRP composites, and subjected to axial monotonic compression. In order to evaluate the influence of several parameters on the mechanical behavior of the columns, the height of the columns was maintained, while changing other parameters: the diameter of the columns, the type of material (plain or reinforced concrete), the steel hoop spacing of the RC columns and the number of CFRP layers. Predictive equations, based on the experimental analysis, are proposed to estimate the compressive strength of the confined concrete, the maximum axial load and the axial or the lateral failure strain of circular RC columns jacketed with CFRP. A stress-strain model for CFRP confined concrete in compression, which considers the effect of the CFRP and the transversal reinforcement on the confined compressive strength of the column is also proposed. The curves, axial load versus axial or lateral strain of the RC column, are simulated based on the stress-strain model and include the longitudinal reinforcement effect. The results demonstrate that the model and the predictive equations represent very well the axial compression behavior of RC circular columns confined with CFRP. The applicability of this model to a large spectrum of RC column dimensions is its main advantage.