Publications

Export 30 results:
Sort by: Author Title Type [ Year  (Desc)]
2006
Duarte AR, Costa MS, Simplício AL, Cardoso MM, Duarte CM. {Preparation of controlled release microspheres using supercritical fluid technology for delivery of anti-inflammatory drugs}. International Journal of Pharmaceutics. 2006;308:168-74. Abstract

Ethylcellulose/methylcellulose blends were produced using different precipitation techniques and impregnated with naproxen, a non-steroidal anti-inflammatory drug (NSAID). Solvent-evaporation technique was used not only for the preparation of ethylcellulose/methylcellulose microspheres but also to encapsulate naproxen. Supercritical fluid (SCF) impregnation was also performed to prepare naproxen loaded microspheres. The microspheres, impregnated by the SCF technique, were prepared both by solvent-evaporation and by a supercritical antisolvent (SAS) process. In vitro release profiles at pH 7.4 and 1.2, of naproxen-loaded microspheres were evaluated and the results were modelled Fick's law of diffusion and Power law. Miscrospheres prepared by supercritical antisolvent have a higher loading capacity and present a slower release profile. The systems studied present a release mechanism controlled by drug diffusion which complies Fick's law of diffusion. © 2005 Elsevier B.V. All rights reserved.

Duarte AR, Gordillo MD, Cardoso MM, Simplício AL, Duarte CM. {Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation}. International Journal of Pharmaceutics. 2006;311:50-4. Abstract

The supercritical antisolvent (SAS) technique was used to prepare ethyl cellulose/methyl cellulose blends, two biocompatible polymers commonly used as drug carriers in controlled delivery systems. Ethyl cellulose is widely used as a drug carrier. The drug release of the delivery devices can be controlled to some extent by addition of a water-soluble or water swellable polymer, such as methyl cellulose. This leads to the solubility enhancement of poorly water-soluble molecules. SAS experiments were carried out at different operational conditions and microspheres with mean diameters ranging from 5 to 30 $μ$m were obtained. The effect of CO2 and liquid flow, temperature and pressure on particle size and particle size distribution was evaluated. The microspheres were precipitated from a mixture of dichloromethane (DCM) and dimethylsulfoxide (DMSO) (4:1 ratio). The best process conditions for this mixture were according to our study 40°C and 80 bar. © 2006 Elsevier B.V. All rights reserved.

Duarte AR, Martins C, Coimbra P, Gil MH, de Sousa HC, Duarte CM. {Sorption and diffusion of dense carbon dioxide in a biocompatible polymer}. Journal of Supercritical Fluids. 2006;38:392-8. Abstract

Mass sorption and diffusion coefficients in one acrylate biocompatible copolymer contacted with supercritical (sc) carbon dioxide are reported. Equilibrium solubility of dense carbon dioxide in poly(methylmethacrylate-co-ethylhexylacrylate-co-ethyleneglycoldimethacr ylate) (P(MMA-EHA-EGDMA)) was studied by a gravimetric method in a temperature range from 308 to 323 K and a pressure range from 10.0 to 20.0 MPa. The cross-linked copolymer presented Fickian behavior and Fick's diffusion model was applied to determine the amount of carbon dioxide present and the diffusion coefficients. Diffusion coefficients for the sorption under supercritical conditions and desorption at ambient conditions were determined and compared. Samples of P(MMA-EHA-EGDMA) with different thickness were used for comparison of the maximum sorption degree. Polymerization conditions were also varied in order to evaluate the influence of the molecular weight of the copolymer in the CO2 sorption process. To investigate the possibility of impregnating this acrylate copolymer with an anti-inflammatory drug, a preliminary experiment was performed. © 2005 Elsevier B.V. All rights reserved.

Duarte AR, Casimiro T, Aguiar-Ricardo A, Simplício AL, Duarte CM. {Supercritical fluid polymerisation and impregnation of molecularly imprinted polymers for drug delivery}. Journal of Supercritical Fluids. 2006;39:102-6. Abstract

Herein the preparation of molecularly imprinted polymers (MIPs) using supercritical fluid technology is evaluated. Poly(diethylene glycol dimethacrylate), polyDEGDMA, was synthesised in supercritical carbon dioxide (scCO2) using a carboxylic acid end-capped perfluoropolyether oil as stabiliser. Polymerisations were carried out in the presence of different concentrations of two different template drug molecules, salicylic acid and acetylsalicylic acid. Results suggest that molecular imprinted polymers were successfully prepared by supercritical polymerisation and then impregnated with the template in order to prepare controlled release systems. © 2006 Elsevier B.V. All rights reserved.

2004
Duarte AR, Coimbra P, {De Sousa} HC, Duarte CM. {Solubility of flurbiprofen in supercritical carbon dioxide}. Journal of Chemical and Engineering Data. 2004;49. Abstract

Equilibrium solubility of flurbiprofen, a nonsteroidal antiinflammatory agent, in supercritical carbon dioxide was measured by a static analytical method in the pressure range from (8.0 to 25.0) MPa, at temperatures of (303.0, 313.0, and 323.0) K. The cosolvent effect of ethanol in the solubility of the bioactive compound in supercritical carbon dioxide was investigated at 18 MPa and 313 K. The results obtained have a potential application in supercritical processes for this drug. Experimental solubility data were correlated with an empirical density-based Chrastil model.