Publications

Export 11 results:
Sort by: [ Author  (Asc)] Title Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Babo P, Santo V{, Duarte AR, Correia C{, Costa MH, Mano J{, Reis RL, Gomes ME. {Platelet lysate membranes as new autologous templates for tissue engineering applications}. Inflammation and Regeneration. 2014;34:033-44. Abstractpdf
n/a
Barros AA, Oliveira C, Ribeiro AJ, Autorino R, Reis RL, Duarte AR, Lima E. {In vivo assessment of a novel biodegradable ureteral stent}. World Journal of Urology. 2017. Abstract

© 2017 Springer-Verlag GmbH Germany, part of Springer Nature Purpose: To perform an in vivo assessment of a newly developed biodegradable ureteral stent (BUS) produced with natural-based polymers. Methods: The BUS is based on a patented technology combining the injection process with the use of supercritical fluid technology. Study was conducted at ICVS—University of Minho (Braga, Portugal) and a total of ten domestic pigs were used. In seven animals, the experimental BUS stent was inserted, whereas in the remaining a commercially available stent was used (6-Fr Biosoft ® duo stents, Porges Coloplast, Denmark). Post-stenting intravenous pyelogram was used to evaluate the degree of hydronephrosis. The in vivo stent degradation was measured as function of the weight loss. Moreover, the tensile properties of the BUS were tested during in vivo degradation. After maximum 10 days, animals were killed and necropsy was performed. Tissues were compared between the stented groups as well as between the non-stented contralateral ureters and stented ureters in each group. Biocompatibility was assessed by histopathological grading. Results: In all cases, the BUS was only visible during the first 24 h on X-ray, and in all cases the BUS was completely degraded in urine after 10 days, as confirmed on necropsy. During the degradation process, the mechanical properties of the BUS decreased, while the commercial ureteral stents remained constant. At all time-points after stent insertion, the level of hydronephrosis was minimal. Overall, animals stented with BUS had an average grade of hydronephrosis which was lower compared to the controls. The BUS showed better pathological conditions, and hence better biocompatibility when compared with commercial stents. Conclusions: Notwithstanding the limitations of the present study, the in vivo testing of our novel natural origin polymer-based BUS suggests this device to feature homogeneous degradation, good urine drainage, and high biocompatibility. Next steps will be to increase its stability, and to improve the radiopacity without compromising its degradation. Ultimately, clinical studies will be required to determine the safety and feasibility of its use in humans.

Barros AA, Aroso IM, Silva TH, Mano JF, Duarte AR, Reis RL. {Surface modification of silica-based marine sponge bioceramics induce hydroxyapatite formation}. Crystal Growth and Design. 2014;14:4545-52. Abstract

Marine biomaterials are a new emerging area of research with significant applications. Recently, researchers are dedicating considerable attention to marine-sponge biomaterials for various applications. We have focused on the potential of biosilica from Petrosia ficidormis for novel biomedical/industrial applications. A bioceramic structure from this sponge was obtained after calcination at 750 °C for 6 h in a furnace. The morphological characteristics of the three-dimensional architecture were evaluated by scanning electron microscopy (SEM) and microcomputed tomography, revealing a highly porous and interconnected structure. The skeleton of P. ficidormis is a siliceous matrix composed of SiO2, which does not present inherent bioactivity. Induction of bioactivity was attained by subjecting the bioceramics structure to an alkaline treatment (2M KOH) and acidic treatment (2M HCl) for 1 and 3 h. In vitro bioactivity of the bioceramics structure was evaluated in simulated body fluid (SBF), after 7 and 14 days. Observation of the structures by SEM, coupled with spectroscopic elemental analysis (EDS), has shown that the surface morphology presented a calcium-phosphate CaP coating, similar to hydroxyapatite (HA). The determination of the Ca/P ratio, together with the evaluation of the characteristic peaks of HA by infrared spectroscopy and X-ray diffraction, have proven the existence of HA. In vitro biological performance of the structures was evaluated using an osteoblast cell line, and the acidic treatment has shown to be the most effective treatment. Cells were seeded on bioceramics structures and their morphology; viability and growth were evaluated by SEM, MTS assay, and DNA quantification, respectively, demonstrating that cells are able to grow and colonize the bioceramic structures. © 2014 American Chemical Society.

Barros AA, Oliveira C, Reis RL, Lima E, Duarte AR. {Ketoprofen-eluting biodegradable ureteral stents by CO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater}impregnation: In vitro study}. International Journal of Pharmaceutics. 2015;495. Abstract

© 2015 Elsevier B.V. Ureteral stents are indispensable tools in urologic practice. The main complications associated with ureteral stents are dislocation, infection, pain and encrustation. Biodegradable ureteral stents are one of the most attractive designs with the potential to eliminate several complications associated with the stenting procedure. In this work we hypothesize the impregnation of ketoprofen, by CO 2 -impregnation in a patented biodegradable ureteral stent previously developed in our group. The biodegradable ureteral stents with each formulation: alginate-based, gellan gum-based were impregnated with ketoprofen and the impregnation conditions tested were 100 bar, 2 h and three different temperatures (35 °C, 40°C and 50°C). The impregnation was confirmed by FTIR and DSC demonstrated the amorphization of the drug upon impregnation. The in vitro elution profile in artificial urine solution (AUS) during degradation of a biodegradable ureteral stent loaded with ketoprofen was evaluated. According to the kinetics results these systems have shown to be very promising for the release ketoprofen in the first 72 h, which is the necessary time for anti-inflammatory delivery after the surgical procedure. The in vitro release studied revealed an influence of the temperature on the impregnation yield, with a higher impregnation yield at 40°C. Higher yields were also obtained for gellan gum-based stents. The non-cytotoxicity characteristic of the developed ketoprofen-eluting biodegradable ureteral stents was evaluated in L929 cell line by MTS assay which demonstrated the feasibility of this product as a medical device.

Barros AA, Browne S, Oliveira C, Lima E, Duarte AR, Healy KE, Reis RL. {Drug-eluting biodegradable ureteral stent: New approach for urothelial tumors of upper urinary tract cancer}. International Journal of Pharmaceutics. 2016;513. Abstract

© 2016 Elsevier B.V. Upper urinary tract urothelial carcinoma (UTUC) accounts for 5–10{%} of urothelial carcinomas and is a disease that has not been widely studied as carcinoma of the bladder. To avoid the problems of conventional therapies, such as the need for frequent drug instillation due to poor drug retention, we developed a biodegradable ureteral stent (BUS) impregnated by supercritical fluid CO 2 (scCO 2 ) with the most commonly used anti-cancer drugs, namely paclitaxel, epirubicin, doxorubicin, and gemcitabine. The release kinetics of anti-cancer therapeutics from drug-eluting stents was measured in artificial urine solution (AUS). The in vitro release showed a faster release in the first 72 h for the four anti-cancer drugs, after this time a plateau was achieved and finally the stent degraded after 9 days. Regarding the amount of impregnated drugs by scCO 2 , gemcitabine showed the highest amount of loading (19.57 $μ$g drug /mg polymer: 2{%} loaded), while the lowest amount was obtained for paclitaxel (0.067 $μ$g drug /mg polymer : 0.01{%} loaded). A cancer cell line (T24) was exposed to graded concentrations (0.01–2000 ng/ml) of each drugs for 4 and 72 h to determine the sensitivities of the cells to each drug (IC 50 ). The direct and indirect contact study of the anti-cancer biodegradable ureteral stents with the T24 and HUVEC cell lines confirmed the anti-tumoral effect of the BUS impregnated with the four anti-cancer drugs tested, reducing around 75{%} of the viability of the T24 cell line after 72 h and demonstrating minimal cytotoxic effect on HUVECs.

Barros AA, Rita AN, Duarte AR, Pires RA, Sampaio-Marques B, Ludovico P, Lima E, Mano JF, Reis RL. {Bioresorbable ureteral stents from natural origin polymers}. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 2015;103:608-17. Abstract

In this work, stents were produced from natural origin polysaccharides. Alginate, gellan gum, and a blend of these with gelatin were used to produce hollow tube (stents) following a combination of templated gelation and critical point carbon dioxide drying. Morphological analysis of the surface of the stents was carried out by scanning electron microscopy. Indwelling time, encrustation, and stability of the stents in artificial urine solution was carried out up to 60 days of immersion. In vitro studies carried out with simulated urine demonstrated that the tubes present a high fluid uptake ability, about 1000{%}. Despite this, the materials are able to maintain their shape and do not present an extensive swelling behavior. The bioresorption profile was observed to be highly dependent on the composition of the stent and it can be tuned. Complete dissolution of the materials may occur between 14 and 60 days. Additionally, no encrustation was observed within the tested timeframe. The ability to resist bacterial adherence was evaluated with Gram-positive Staphylococcus aureus and two Gram-negatives Escherichia coli DH5 alpha and Klebsiella oxytoca. For K. oxytoca, no differences were observed in comparison with a commercial stent (Biosoft((R)) duo, Porges), although, for S. aureus all tested compositions had a higher inhibition of bacterial adhesion compared to the commercial stents. In case of E. coli, the addition of gelatin to the formulations reduced the bacterial adhesion in a highly significant manner compared to the commercial stents. The stents produced by the developed technology fulfill the requirements for ureteral stents and will contribute in the development of biocompatible and bioresorbable urinary stents.

Barros AA, Silva JM, Craveiro R, Paiva A, Reis RL, Duarte AR. {Green solvents for enhanced impregnation processes in biomedicine}. Current Opinion in Green and Sustainable Chemistry. 2017;5:82-7. Abstractpdf

Supercritical carbon dioxide has been used as a green solvent due to their well-known potential in biomaterials impregnation. The versatility of this technique enables the loading of implants with Active Pharmaceutical Ingredients which present several benefits when compared with traditional techniques to impregnate active compounds. In this review, we have summarized the recent progresses achieved in supercritical CO2assisted impregnation of active compounds and therapeutic deep eutectic systems for biomedical applications.

Barros AA, Aroso IM, Silva TH, Mano JF, Duarte AR, Reis RL. {In vitro bioactivity studies of ceramic structures isolated from marine sponges}. Biomedical Materials (Bristol). 2016;11. Abstract

© 2016 IOP Publishing Ltd. In this work, we focused on the potential of bioceramics from different marine sponges - namely Petrosia ficiformis, Agelas oroides and Chondrosia reniformis - for novel biomedical/industrial applications. The bioceramics from these sponges were obtained after calcination at 750 °C for 6 h in a furnace. The morphological characteristics were evaluated by scanning electron microscopy (SEM). The in vitro bioactivity of the bioceramics was evaluated in simulated body fluid (SBF) after 14 and 21 d. Observation of the bioceramics by SEM after immersion in SBF solution, coupled with spectroscopic elemental analysis (EDS), showed that the surface morphology was consistent with a calcium-phosphate (Ca/P) coating, similar to hydroxyapatite crystals (HA). Evaluation of the characteristic peaks of Ca/P crystals by Fourier transform infrared spectroscopy and x-ray diffraction further confirmed the existence of HA. Cytotoxicity studies were carried out with the different ceramics and these were compared with a commercially available Bioglass ® . In vitro tests demonstrated that marine bioceramics from these sponges are non-cytotoxic and have the potential to be used as substitutes for synthetic Bioglass ® .

Barros A, Quraishi S, Martins M, Gurikov P, Subrahmanyam R, Smirnova I, Duarte AR, Reis RL. {Hybrid Alginate-Based Cryogels for Life Science Applications}. Chemie-Ingenieur-Technik. 2016;88. Abstract

© 2016 WILEY-VCH Verlag GmbH {&} Co. KGaA, Weinheim. This work presents a novel route toward porous scaffolds for tissue engineering and regenerative medicine (TERM) applications. Hybrid cryogels with gelatin, gellan gum, carboxymethylcellulose, and lignin were prepared by a two-step process. Textural properties of the cryogels were analyzed by SEM and micro-computed tomography. The results indicated that rapid freezing retained sample shape and yielded macroporous materials. The mechanical properties of the cryogels were characterized in compression mode. Cytotoxicity studies indicated that the hybrid-alginate cryogels did not present cytotoxicity and have the potential to be used in TERM.

Barros AA, Aroso IM, Silva TH, Mano JF, Duarte AR, Reis RL. {Water and carbon dioxide: Green solvents for the extraction of collagen/gelatin from marine sponges}. ACS Sustainable Chemistry and Engineering. 2015;3:254-60. Abstract

Marine sponges are extremely rich in natural products and are considered a promising biological resource. The major objective of this work is to couple a green extraction process with a natural origin raw material to obtain sponge origin collagen/gelatin for biomedical applications. Marine sponge collagen has unique physicochemical properties, but its application is hindered by the lack of availability due to inefficient extraction methodologies. Traditional extraction methods are time consuming as they involve several operating steps and large amounts of solvents. In this work, we propose a new extraction methodology under mild operating conditions in which water is acidified with carbon dioxide (CO2) to promote the extraction of collagen/gelatin from different marine sponge species. An extraction yield of approximately 50{%} of collagen/gelatin was achieved. The results of Fourier transformed infrared spectroscopy (FTIR), circular dichroism (CD), and differential scanning calorimetry (DSC) spectra suggest a mixture of collagen/gelatin with high purity, and the analysis of the amino acid composition has shown similarities with collagen from other marine sources. Additionally, in vitro cytotoxicity studies did not demonstrate any toxicity effects for three of the extracts.

Barros AA, Oliveira C, Reis RL, Lima E, Duarte AR. {In Vitro and Ex Vivo Permeability Studies of Paclitaxel and Doxorubicin From Drug-Eluting Biodegradable Ureteral Stents}. Journal of Pharmaceutical Sciences. 2017;106. Abstract

© 2017 American Pharmacists Association® A drug-eluting biodegradable ureteral stent (BUS) has been developed as a new approach for the treatment of urothelial tumors of upper urinary tract cancer. In a previous work, this system has proven to be a good carrier for anticancer drugs as a potential effective and sustainable intravesical drug delivery system. BUS has revealed to reduce in 75{%} the viability of human urothelial cancer cells (T24) after 72 h of contact and demonstrated minimal cytotoxic effect on human umbilical vein endothelial cells (HUVECs) which were used as a control. In this work, we studied the permeability of the anticancer drugs, such as paclitaxel and doxorubicin, alone or released from the BUS developed. We used 3 different membranes to study the permeability: polyethersulfone (PES) membrane, HUVECs cell monolayer, and an ex vivo porcine ureter. The ureter thickness was measured (864.51 $μ$m) and histological analysis was performed to confirm the integrity of urothelium. Permeability profiles were measured during 8 h for paclitaxel and doxorubicin. The drugs per se have shown to have a different profile and as expected, increasing the complexity of the membrane to be permeated, the permeability decreased, with the PES being more permeable and the ex vivo ureter tissue being less permeable. The molecular weight has also shown to influence the permeability of each drug and a higher percentage for doxorubicin (26{%}) and lower for paclitaxel (18{%}) was observed across the ex vivo ureter. The permeability (P), diffusion (D), and partition (K d ) coefficients of paclitaxel and doxorubicin through the permeable membranes were calculated. Finally, we showed that paclitaxel and doxorubicin drugs released from the BUS were able to remain in the ex vivo ureter and only a small amount of the drugs can across the different permeable membranes with a permeability of 3{%} for paclitaxel and 11{%} for doxorubicin. The estimated amount of paclitaxel that remains in the ex vivo ureter tissue is shown to be effective to affect the cancer cell and not affect the noncancer cells.