A strict upper-bound limit analysis finite element formulation is used to estimate shape factors s_gamma and s_q for determining the bearing capacity of shallow foundations using the classic bearing capacity formula. The finite element formulation uses a quadratic approximation for the velocity field, an extension of a previously published Augmented Lagrangian formulation with a linear velocity field, and was implemented for a parallel processing environment. Results from determining the limit loads under three-dimensional conditions are presented and compared with previously published data. The results obtained allow a strict upper-bound determination of the shape factors. Furthermore, a practical proposal for these factors is made and compared with other proposals made by other authors.
A previous paper studied the stability of soldier-pile walls in clay under vertical loading using upper bound analyses. A classical Tresca yield criterion was assumed in that analysis. This paper extends that study by considering a tension truncated Tresca yield criterion in an upper bound numerical analysis of the problem. It shows that assuming zero tension soil strength has a significant influence on the values of the minimum soldier-pile resistance required to ensure stability.
A three-dimensional (3D) numerical implementation of the limit analysis upper-bound theorem is used to determine passive horizontal earth-pressure coefficients. An extension technique allowing determination of the 3D passive earth pressures for any width-to-height ratios greater than 7 is presented. The horizontal passive earth-pressure coefficients are presented and compared with solutions published previously. Results of the ratio between the 3D and two-dimensional horizontal passive earth-pressure coefficients are shown and found to be almost independent of the soil-to-wall friction ratio. A simple equation is proposed for calculating this passive earth-pressure ratio.