A previous paper studied the stability of soldier-pile walls in clay under vertical loading using upper bound analyses. A classical Tresca yield criterion was assumed in that analysis. This paper extends that study by considering a tension truncated Tresca yield criterion in an upper bound numerical analysis of the problem. It shows that assuming zero tension soil strength has a significant influence on the values of the minimum soldier-pile resistance required to ensure stability.
The paper describes the three-dimensional numerical implementation of the Lade-Duncan criterion in a finite element limit analysis (FELA) code. Validation is done using examples with a known solution. To conclude the proposed numerical tool is applied to the calculation of the ultimate bearing capacity of square footing.
A three-dimensional (3D) numerical implementation of the limit analysis upper-bound theorem is used to determine passive horizontal earth-pressure coefficients. An extension technique allowing determination of the 3D passive earth pressures for any width-to-height ratios greater than 7 is presented. The horizontal passive earth-pressure coefficients are presented and compared with solutions published previously. Results of the ratio between the 3D and two-dimensional horizontal passive earth-pressure coefficients are shown and found to be almost independent of the soil-to-wall friction ratio. A simple equation is proposed for calculating this passive earth-pressure ratio.
This paper deals with the determination of upper and lower bounds for the three-dimensional undrained stability of shallow tunnels. The tunnel is circular and a distance between its face and its lining is considered. The soil shear strength is modeled using the Tresca criterion. Results of the upper and lower bounds of the stability number are presented, for several geometrical and resistance configurations and their comparison with previous results is made, showing the clear improvement obtained. Finally, equations approaching the stability number are proposed.
A strict upper-bound limit analysis finite element formulation is used to estimate shape factors s_gamma and s_q for determining the bearing capacity of shallow foundations using the classic bearing capacity formula. The finite element formulation uses a quadratic approximation for the velocity field, an extension of a previously published Augmented Lagrangian formulation with a linear velocity field, and was implemented for a parallel processing environment. Results from determining the limit loads under three-dimensional conditions are presented and compared with previously published data. The results obtained allow a strict upper-bound determination of the shape factors. Furthermore, a practical proposal for these factors is made and compared with other proposals made by other authors.