Publications

Export 575 results:
Sort by: Author Title Type [ Year  (Desc)]
2001
Ferreira, I.a, Costa Pereira Fortunato Martins Ramos Silva M. E. V. b. "Silicon carbide alloys produced by hot wire, hot wire plasma-assisted and plasma-enhanced CVD techniques." Applied Surface Science. 184 (2001): 8-19. AbstractWebsite

In this work, we report the optical and compositional properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films produced by plasma-enhanced chemical vapor deposition (PE-CVD), hot wire CVD (HW-CVD) and hot wire plasma-assisted CVD (HWPA-CVD) processes. The optical band gap of a-SiC:H films was controlled from 1.85 to 3.5 eV by varying the percentage of ethylene in the silane gas mixture from 3 to 100%. Adding a rf plasma to the hot wire process the carbon gas source dissociation is implemented leading to an increase in bulk carbon incorporation. This evidence is proved by the enhancement of the peak ascribed to the SiC stretching vibration mode, the reduction of the peak related to the SiH wagging modes, the decrease in the refractive index and the increase of optical band gap. The influence of hydrogen gas dilution on the properties of the films obtained by the different methods is also reported. © 2001 Elsevier Science B.V. All rights reserved.

Cabrita, A., Pereira Brida Lopes Marques Ferreira Fortunato Martins L. D. A. "Silicon carbide photodiodes: Schottky and PINIP structures." Applied Surface Science. 184 (2001): 437-442. AbstractWebsite

This work deals with the study of the role of intra-gap density of states and films composition on the colour selection of the collection spectrum of glass/ITO/a-Six:C1-x:H/Al Schottky photodiodes produced in a conventional plasma-enhanced chemical vapour deposition (PECVD) system using as gas sources silane and a controlled mixtures of silane and methane. To do so, properties of the films were investigated, especially the one concerning the determination of the valence controllability of the films produced and the density of bulk states. Besides that, a PINIP device was also produced, using the a-Six:C1-x:layer that lead to the best Schottky diode performances. © 2001 Elsevier Science B.V. All rights reserved.

Martins, R., Águas Silva Ferreira Cabrita Fortunato H. V. I. "Silicon films produced by PECVD under powder formation conditions." Materials Science Forum. 382 (2001): 21-28. AbstractWebsite

The process conditions of growing thin silicon films by plasma enhanced chemical vapour deposition (PECVD) were presented. The plasma impedance was found to monitor the powders in the PECVD systems and good quality silicon films were grown close to the plasma regime where the powders were formed. The silicon films exhibited properties which were interpreted based on a two-phase model where silicon nanostructures were embedded in a disordered network.

Nunes, P., Fortunato Martins E. R. "Thin film combustible gas sensors based on zinc oxide." Materials Research Society Symposium - Proceedings. Vol. 666. 2001. F521-F526. Abstract

Sensitivity tests to reductive gases such as methane, hydrogen and ethane were performed on zinc oxide (ZnO) thin films. The highest value of sensitivity was obtained for the film with a high electrical resistivity and a low thickness. The variation of the operating temperature of the film leads to a significant change in the sensitivity of the sensor with an ideal operating temperature dependence of the gas used. The sensitivity of the ZnO thin films changes linear with the increase of the gas concentration. However these films seem to be more appropriated for the detection of hydrogen following by methane and than for ethane since the value of sensitivity obtained are higher and its variation with the gas concentration more pronounced.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Martins P. a A. a. "Thin film metal oxide semiconductors deposited on polymeric substrates." Materials Research Society Symposium Proceedings. Vol. 685. 2001. 146-151. Abstract

Highly textured transparent conducting ZnO:Al thin films have been prepared by r.f. magnetron sputtering. The films were deposited on polyester (Mylar type D, 100 μm thickness) and glass substrates at room temperature. Surface stylus profiling, X-ray diffraction, scanning electron microscopy, transmission electron microscope and Hall effect measurements as a function of temperature, using the van der Pauw technique have characterized the films. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface (columnar structure). The ZnO:Al thin films with a resistivity as low as 3.6×10-2 Ωcm have been obtained, as deposited. © 2001 Materials Research Society.

Fortunato, E., Nunes Marques Costa Águas Ferreira Costa Martins P. A. D. "Thin film metal oxide semiconductors deposited on polymeric substrates." Materials Research Society Symposium - Proceedings. Vol. 666. 2001. F1131-F1136. Abstract

Highly textured transparent conducting ZnO:Al thin films have been prepared by r.f. magnetron sputtering. The films were deposited on polyester (Mylar type D, 100 μm thickness) and glass substrates at room temperature. Surface stylus profiling, X-ray diffraction, scanning electron microscopy, transmission electron microscope and Hall effect measurements as a function of temperature have been used to characterize the produced films. The samples are polycrystalline with a hexagonal wurtzke structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface (columnar structure). The ZnO:Al thin films with a resistivity as low 3.6×10-2 Ωcm have been obtained, as deposited.

Cabrita, A., Figueiredo Pereira Águas Silva Brida Ferreira Fortunato Martins J. L. H. "Thin film position sensitive detectors based on pin amorphous silicon carbide structures." Applied Surface Science. 184 (2001): 443-447. AbstractWebsite

The performances of silicon carbide position sensitive detectors in relation to position color selection applications were presented. The devices were deposited on glass substrates coated with a transparent conductive oxide layer based on indium tin oxide film (ITO). On top of the ITP layer a pin structure produced by plasma enhanced chemical vapor deposition technique was deposited. The set of data achieved indicated that the undoped silicon carbide layers presented a low density of states, which explained high dark conductivity values obtained and the type of performances recorded on the PSD devices produced.

Fortunato, E.a, Nunes Marques Costa Águas Ferreira Costa Martins P. a A. a. "Zinc oxide thin films deposited by rf magnetron sputtering on mylar substrates at room temperature." Materials Research Society Symposium Proceedings. Vol. 685. 2001. 140-145. Abstract

Aluminium doped zinc oxide thin films (ZnO:Al) have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, morphological, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. The ZnO:Al thin films with 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×102 Ωcm have been obtained, as deposited. The obtained results are comparable to those ones obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2001 Materials Research Society.

2000
Águas, H.M.B., Fortunato Cabrita Silva Tonello Martins E. M. C. A. "Correlation between surface/interface states and the performance of MIS structures." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A1211-A1216. Abstract

In order to understand the kinetics of formation of interface/surface states and its correlation on the final device performance, a preliminary study was performed on MIS structures, before and after surface oxidation/passivation, using different oxidation techniques and oxides: thermal (in air), chemical (in H2O2) and oxygen plasma. The devices used in this work are based on a glass/Cr/a-Si:H(n+)/a-Si:H(i)/SiOx/Pd structures, where the amorphous silicon intrinsic layer (i a-Si:H) with a photosensitivity of 107 was deposited by a modified plasma enhanced chemical vapour deposition (PECVD) triode system. The electrical properties of a-Si:H MIS structures were investigated by measuring their diode current-voltage characteristics in the dark and under illumination as well as the spectral response, as a function of the various oxidation techniques. Infrared spectroscopy and spectroscopic ellipsometry were used as a complementary tool to characterise the oxidised surface.

Fortunato, E., Ferreira Giuliani Martins I. F. R. "Flexible large area thin film position sensitive detectors." Sensors and Actuators, A: Physical. 86 (2000): 182-186. AbstractWebsite

Large area thin film position sensitive detectors based on amorphous silicon technology have been prepared on polyimide substrates using the conventional plasma-enhanced chemical vapour deposition. The sensors have been characterized by spectral response, light intensity dependence and linearity measurements in a bent state in order to evaluate the properties in real working conditions. The obtained one-dimensional (1D) position sensors with 10 mm width and 20 mm length present a non-linearity of ±1% which are comparable to the ones produced on glass substrates.

Martins, R., Ferreira Cabrita Fortunato I. A. E. "Improvement of a-Si:H device stability and performances by proper design of the interfaces." Journal of Non-Crystalline Solids. 266-269 B (2000): 1094-1098. AbstractWebsite

This paper deals with a new design method for the interfaces of a-Si:H pin solar cells that improves the stability and performances of devices deposited in a single batch chamber process. The method consists in removing a deposited sacrificial layer placed between the p/i and/or i/n interfaces by etching. This layer is an absorber of defects and impurities that are introduced in the interfaces, mainly from the chamber walls cross-contamination and the substrate surface. The results achieved increase the device fill factor and short circuit current density, respectively towards 75% and 16.3 mA cm-2, with a final efficiency of about 10%, before light soaking experiments. © 2000 Elsevier Science B.V. All rights reserved.

Fortunato, E.M.C., Brida Ferreira Águas Nunes Cabrita Giuliani Nunes Maneira Martins D. I. M. M. "Large area flexible amorphous silicon position sensitive detectors." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A1271-A1276. Abstract

Large area thin film position sensitive detectors based on amorphous silicon technology have been prepared on polyimide substrates using the conventional plasma enhanced chemical vapour deposition technique. The sensors have been characterised by spectral response, illuminated I-V characteristics and position detectability measurements. The obtained one dimensional position sensors with 5 mm wide and 60 mm long present a maximum spectral response at 600 nm, an open circuit voltage of 0.6 V° and a position detectability with a correlation of 0.9989 associated to a standard deviation of 1 × 10-2, comparable to those ones produced on glass substrates. The surface of the sensors at each stage of fabrication was investigated by Atomic Force Microscopy.

Ferreira, J.a, Fernandes Gonçalves Nunes Fortunato Martins Martins Marvão B. a C. a. "Morphological and structural characteristics presented by the Cu-Sn-Cu metallurgical system used in electronic joints." Materials Science and Engineering A. 288 (2000): 248-252. AbstractWebsite

Results are presented concerning the morphological and structural characteristics exhibited by the Cu-Sn-Cu system to be used in electronic lead-free soldering processes, under different process temperatures and pressures. The results show that the Cu3Sn or Cu6Sn5 phases needed to supply the thermal, mechanical and electrical stability to the joints formed require Sn layers (either electrodeposited or by using preforms) whose thickness depends on the process temperature used. For process temperatures of 533 K the thickness of the Sn layer should be above 20 μm, while for process temperatures of 573 K, the Sn thickness required is reduced to 10 μm. The joints formed support shear stresses above 12 MPa, as required by electronic standards. Apart from that, microcracks start appearing if an excess of Sn is used during the soldering operation. The set of tests performed indicates that this new joint is quite promising to substitute the conventional solder process applied to power diodes.

Ferreira, I.M.M., Cabrita Fortunato Martins A. M. F. E. "N-type silicon films produced by hot wire technique." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A651-A656. Abstract

The role of the deposition pressure (p) and the type of filaments (tungsten, W or tantalum, Ta) used to produce large area (10cm×10cm) n-type Si:H films by hot wire chemical vapour (HW-CVD) deposition technique was investigated. The data show that the electro-optical properties of the films produced are dependent on the gas pressure used. In the pressure range of 1×10-3 Torr to 1.0 Torr, the room dark conductivity (σd) varies from 1×10-8 to 2 S/cm for films produced at the same hydrogen dilution and filament temperature (Tfil). On the other hand, the hydrogen concentration (CH) decreases from 10% to 2%, while the growth rate (R) shows an exponential increase, from 1 to 9 Å/s. The SIMS analysis, within the detection limits, does not reveal the existence of any significant W or Ta contamination in the films produced.

Ferreira, I.M.M., Martins Cabrita Fortunato Vilarinho R. F. P. A. "Nanocrystalline undoped silicon films produce by hot wire plasma assisted technique." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A2241-A2246. Abstract

In this work, we show results concerning electro-optical properties, composition and morphology of nanocrystalline hydrogenated undoped silicon (nc-Si:H) films produced by hot wire plasma assisted chemical vapour deposition process (HWPA-CVD) and exhibiting a compact granular structure, as revealed by SEM micrographs. This was also inferred by infrared spectra, which does not present the SiO vibration band located at 1050-1200 cm-1, even when samples have long atmospheric exposition. The photoconductivity measured at room temperature also does not change when samples have a long time exposition to the air or to the light irradiation. The influence of hydrogen dilution on the properties of the films was also investigated.

Martins, R., Águas Cabrita Tonello Silva Ferreira Portunato Guimares H. A. P. "New nanostructured silicon films grown by pecvd technique under controlled powder formation conditions." Solar Energy. 69 (2000): 263-269. AbstractWebsite

In this paper the influence of the DC grid bias on the plasma impedance and the I-V behaviour of silane plasmas used to grow undoped amorphous silicon films by plasma enhanced chemical vapour deposition technique using a triode configuration at or close to the powder regime is studied. The aim is to determine the correlation between the r.f. power and the DC grid voltage with the plasma parameters, under isothermal gas conditions. The results should lead to the production of nanostructured films, with the required optoelectronic characteristics for photovoltaic applications. The results achieved show the existence of a boundary region close to the γ-regime (powder formed) where nanoparticles can be formed by moderated ion bombardment of the growing surface. This is characterised by the plasma resistance of the same order of magnitude of the plasma reactance. Under this condition, it is possible to grow amorphous silicon films that can incorporate nanoparticles, exhibiting photosensitivities of about 107 (two orders of magnitude larger than the one exhibited by films grown under conventional conditions) with densities of states determined by the constant photocurrent method below 3 × 1015 cm3. Apart from that, the growth of the films is less affected by light soaking than the conventional films grown by standard techniques. © 2001 Elsevier Science Ltd. All rights reserved.

Fortunate, E.a, Ferreira Giuliani Wurmsdobler Martins I. a F. a. "New ultra-light flexible large area thin film position sensitive detector based on amorphous silicon." Journal of Non-Crystalline Solids. 266-269 B (2000): 1213-1217. AbstractWebsite

In this paper we report on large area one dimensional (1D) amorphous silicon position sensors deposited on flexible polymer foil substrate. The pin sensor structure was deposited by rf plasma enhanced chemical vapour deposition (PECVD). For the electrical and optical characterisation the sensors have been mounted on a convex holder with a 14-mm radius-of-curvature, since the main goal of this work is to develop a flexible position sensor to be incorporated in a micromotor in order to measure its angular velocity continuously. The obtained sensors present adequate performances concerning the position non-linearity (±1% in 20 mm length), comparable to those fabricated on glass substrates. © 2000 Elsevier Science B.V. All rights reserved.

Fortunato, E.a, Teodoro Silva Ferreira Nunes Guimarães Soares Giuliani Popovic Brener Martins P. a V. a. "Performances of an optical ruler based on one-dimensional hydrogenated amorphous Si position-sensitive detectors produced using different metal contacts." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 80 (2000): 765-774. AbstractWebsite

The aim of this work is to determine the role of different metal contacts on the performances of one-dimensional thin-film position-sensitive detectors produced by plasma-enhanced chemical vapour deposition, to be used in optical rulers for alignment applications. The device consists on an indium tin oxide/p-i-n structure where the metal contacts used were based on Al, Al + Cu and Ag. The results achieved show that the contact mainly influences the final sensor range by limiting the magnitude of the analogue signals recorded. In spite of soldering problems the Al contact was the contact that lead to better discrimination of the sensor, with a nonlinearity of ±0.8% and a fall-off parameter of 3.2 × 10-3 cm-1. The Al + Cu contact also exhibits good performances (nonlinearity, of ±1.1%; fall-off parameter, 1.4 × 10-2 cm-1) and should be chosen since it is much easier to solder but requires protection against oxidation. The integration of these sensors on the optical ruler lead to the production of a system with a response time below 0.5 ms, an accuracy better than ±1% and a mechanical precision of better than 0.25 mm in 100 mm, with a full-scale noise below ±0.1%.

Águas, H., Martins Fortunato R. E. "Plasma diagnostics of a PECVD system using different R.F. electrode configurations." Vacuum. 56 (2000): 31-37. AbstractWebsite

This work aims to study the role of the r.f. electrode configuration on the plasma characteristics of a PECVD asymmetric reactor. The configurations used are the usual diode configuration, the triode configuration and a new configuration that we named short-circuited grid electrode (SGE). The plasma generated was characterized with the use of a Langmuir probe and an impedance probe. We demonstrate that the plasma parameters are highly dependent on the reactor geometry. The results achieved show that by changing the r.f. electrode configuration the DC self-bias varies from about 100 to close to 0 V. This variation causes changes in the ion bombardment of the reactor surfaces, which can affect the growing of the films deposited. We also demonstrate that for the SGE configuration the area seen by the plasma does not correspond to the exposed physical area of the electrode, and we suggest a model to explain this phenomenon.

Ferreira, J.a, Seiroco Braz Fernandes Martins Fortunato Marvão Martins H. a F. a. "Production of low cost contacts and joins for large area devices by electrodeposition of Cu and Sn." Applied Surface Science. 168 (2000): 292-295. AbstractWebsite

The aim of this paper is to present results concerning the morphology, structure, mechanical and electrical characteristics of the new proposed Cu-Sn metallurgical alloy, which may be used in electronic joins. By proper choice of process temperature and pressure, Cu coated surfaces are soldered using Sn as pre-form. The main results achieved indicate that the formation of Cu3Sn phase begins at a temperature of about 473 K and that the Sn thickness (dSn) needed is slightly above 7 μm. Due to join wettability, higher temperatures (between 523 and 573 K) and dSn above 35 μm are required to form joins within the specifications of the electronic industry.

Águas, H., Martins Fortunato R. E. "Role of ion bombardment on the properties of a-Si : H films." Vacuum. 60 (2000): 247-254. AbstractWebsite

In this work we present a study of influence of ion bombardment on the optical, electrical and compositional properties of the intrinsic amorphous silicon films deposited in a modified triode plasma-enhanced chemical vapour deposition (PECVD) reactor. The application of a DC voltage to a grid placed in front of the r.f. electrode allowed us to control the energy and polarity of the ions striking the substrate during film growth. The results show a variation by two orders of magnitude in the dark conductivity from 10-10 to 6.2 × 10-12 (Ω cm)-1, while the photosensitivity varied from 2 × 105 to 2 × 107. A process plasma that takes place in the γ-type regime was associated with the use of a negative bias, while a process plasma like the one of the α-type regime was associated with the use of a positive bias. The films deposited with a bias ≈ 38 V are highly intrinsic and the abrupt change in the conductivity properties observed at this bias is attributed to a change in the density of the states ascribed to the position of the Fermi level. That is, a precise control of the energy of the ions striking the substrate during the film growth leads to improved film optoelectronic properties, very important for device applications. © 2001 Elsevier Science Ltd. All rights reserved.

Martins, R.a, Ferreira Gonçalves Nunes Fortunato Marvão Martins J. a C. a. "Role of soldering parameters on the electrical performances presented by Cu-Sn-Cu joints used in power diodes." Materials Science and Engineering A. 288 (2000): 275-279. AbstractWebsite

The effects of Sn thickness electrodeposited over Cu on the structural and morphological performance of the joints formed were investigated. The electrical stability of the joints formed was analyzed under extreme aggressive conditions. Results indicated that the proposed soldering technology greatly satisfied the demands concerning soldering specifications.

Martins, R., Silva Ferreira Domingues Fortunato V. I. A. "Role of the gas temperature and power to gas flow ratio on powder and voids formation in films grown by PECVD technique." Vacuum. 56 (2000): 25-30. AbstractWebsite

This paper deals with the study of the role of gas temperature and of the ratio of r.f. power to gas flow on the particle’s formation in amorphous silicon films grown by plasma enhanced chemical vapour deposition technique, by monitoring the plasma impedance behaviour under different process conditions. The aim is to determine in which conditions the particles formed do not deteriorate the performances of the films grown or even can lead to an improvement of the properties of the films deposited. The results achieved show the existence of two main boundary regions (β- and θ-regions) separating the so-called α-regime (no powder formed) from the γ-regime (powder formed). Those regions are reached either by heating the gas, changing the gas pressure or using high power to gas flow ratios. In the β-region the probability of incorporating nanoparticles in the films is low and the films exhibit properties similar to those of the ones grown in the α-regime, with a low density of voids incorporated. In the θ-region small nanoparticles can be incorporated leading to films with density of states below 5×1015 cm-3, widened Urbach energies and photosensitivities about two orders of magnitude larger than that of conventional amorphous silicon grown in the α-regime. © 2000 Elsevier Science Ltd.

Martins, R., Silva Ferreira Domingues Fortunato V. I. A. "Role of the gas temperature and power to gas flow ratio on powder formation and properties of films grown by the PECVD technique." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 69 (2000): 272-277. AbstractWebsite

This paper deals with the study of the role of gas temperature and of the ratio of r.f. power to gas flow on the particle's formation in amorphous silicon films grown by the plasma enhanced chemical vapour deposition technique, by monitoring the plasma impedance behaviour under different process conditions. The results achieved show the existence of two main boundary regions separating the so-called α-regime (no powder formed) from the γ-regime (powder formed). Those regions are reached either by heating the gas, changing the gas pressure or using high power to gas flow ratios, corresponding to the establishment of a balance between the plasma resistance and the plasma reactance. In the β-region the probability to incorporate nanoparticles in the films is low and the films exhibit photosensitivity's of about 105 with density of states determined by the constant photocurrent method below 6×1015 cm-3 with Urbach energies below 50 meV. In the θ-region small nanoparticles can be incorporated leading to films with density of states below 3×1015 cm-3, with Urbach energies above 50 meV and photosensitivity's above 106, about two orders of magnitude larger than that of conventional amorphous silicon grown in the α-regime.

Águas, H., Silva Ferreira Fortunato Martins V. I. E. "Study of the effect of different plasma-enhanced chemical vapour deposition reactor configurations on the properties of hydrogenated amorphous silicon thin films." Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties. 80 (2000): 475-486. AbstractWebsite

In this work we present a study performed in a plasma-enhanced chemical vapour deposition reactor, where different rf electrode configurations were used with the aim of achieving conditions that lead to growth of highly uniform amorphous silicon films, with the required electronic quality, at high growth rates. This study consists in determining the plasma characteristics under different electrode configurations, in an argon plasma, using as diagnostic tools a Langmuir probe and impedance probe. These results were correlated with the hydrogenated amorphous silicon films produced, thereby allowing us to establish the best electrode configuration to grow electronic-grade-quality amorphous silicon films.