Toward high-performance amorphous GIZO TFTs

Citation:
Barquinha, P., Pereira Goņalves Martins Fortunato L. G. R. "Toward high-performance amorphous GIZO TFTs." Journal of the Electrochemical Society. 156 (2009): H161-H168.

Abstract:

This work analyzes the role of processing parameters on the electrical performance of GIZO (Ga2 O3: In2 O3:ZnO) films and thin-film transistors (TFTs). Parameters such as oxygen partial pressure, deposition pressure, target composition, thickness, and annealing temperature are studied. Generally, better devices are obtained when low oxygen partial pressure is used. This is related to the damage induced by oxygen ion bombardment and very high film's resistivity when higher oxygen partial pressures are used. Low deposition pressures and targets with richer indium compositions led to films with high carrier concentration, resulting in transistors with field-effect mobility as high as ∼80 cm2 Vs but poor channel conductivity modulation, becoming ineffective as switching devices. Nevertheless, it is demonstrated that reducing the GIZO thickness from 40 to 10 nm greatly enhances the switching behavior of those devices, due to the lower absolute number of free carriers and hence to their easier depletion. Annealing also proves to be crucial to control device performance, significantly modifying GIZO electrical resistivity and promoting local atomic rearrangement, being the optimal temperature determined by the as-produced films' properties. For the best-performing transistors, even with a low annealing temperature (150°C), remarkable properties such as μFE =73.9 cm2 Vs, onoff ratio≈7× 107, VT ≈0.2 V, and S=0.29 Vdec are achieved. © 2008 The Electrochemical Society.

Notes:

cited By 171

Related External Link