Publications

Export 132 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Fortunato, E., Barquinha Pereira Gonçalves Martins P. L. G. "Advanced materials for the next generation of thin film transistors." IDMC 2007 - International Display Manufacturing Conference and FPD Expo - Proceedings. 2007. 371-373. Abstract

Staggered bottom gate transparent thin film transistors (TTFTs) have been produced by rf magnetron sputtering at room temperature, using amorphous indium-zinc-oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TTFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/Vs, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7×10 7. The high performances presented by these TTFTs produced at room temperature, make these TFTs a promising candidate for flexible, wearable, disposable portable electronics as well as battery-powered applications.

Fortunato, E., Barquinha Pimentel Pereira Gonçalves Martins P. A. L. "Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs." Physica Status Solidi - Rapid Research Letters. 1 (2007): R34-R36. AbstractWebsite

In this paper we demonstrate the use of amorphous binary In2O3-ZnO oxides simultaneously as active channel layer and as source/drain regions in transparent thin film transistor (TTFT), processed at room temperature by rf sputtering. The TTFTs operate in the enhancement mode and their performances are thickness dependent. The best TTFTs exhibit saturation mobilities higher than 102 cm2/Vs, threshold voltages lower than 6 V, gate voltage swing of 0.8 V/dec and an on/off current ratio of 107. This mobility is at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and comparable to or even better than other polycrystal-line semiconductors. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Fortunato, E.a, Malik Sêco Ferreira Martins A. a A. b. "Amorphous silicon sensors: From photo to chemical detection." Journal of Non-Crystalline Solids. 227-230 (1998): 1349-1353. AbstractWebsite

This paper reports the performances of metal/insulator/semiconductor devices, simultaneously sensitive to hydrogen and to the visible region of the spectrum. The sensors used in this work are based on glass/Cr/a-SiH(n+)/a-Si:H(i)/SiOx/Pd structures, where the amorphous silicon was deposited by conventional r.f. techniques and the oxide grown thermally (in air) or chemically (in hydrogen peroxide). The proposed sensors present a response of ∼ 3 orders of magnitude change in the saturation current when in the presence of 400 ppm of hydrogen and an open circuit voltage that decreases in the presence of hydrogen, with a maximum spectral response at 500 nm. These sensors were also compared with equivalent crystalline silicon devices whose oxides were prepared exactly in the same conditions as the ones used for the a-Si:H devices. © 1998 Elsevier Science B.V. All rights reserved.

Fortunato, E., Malik Martins A. R. "Amorphous silicon thin films applied to photochemical sensors." Vacuum. 52 (1999): 41-44. AbstractWebsite

The present paper describes the properties of a photochemical sensor based on amorphous silicon MIS (Metal-Insulator-Semiconductor) diodes. The structure of the sensors used in this work are based on glass/Cr/a-SiH(n +)/a-Si:H(i)SiOx/Pd, where the amorphous silicon layers have been deposited by conventional plasma r.f. techniques. The proposed photochemical sensors present a 2-3 orders of magnitude change in the saturation current and a decrease of up to 40% on the open circuit voltage when in the presence of 400 ppm of hydrogen. The overall performance of these sensors, associated with the low cost fabrication technology, suggests that, in the near future, it will be possible to use them in several industrial applications. © 1998 Elsevier Science Ltd. All rights reserved.

Fortunato, E.a, Lavareda Vieira Martins Ferreira G. a M. a. "Application of thin film technology to optical sensors." Vacuum. 45 (1994): 1151-1154. AbstractWebsite

In this paper we present results of PIN single and dual axis Thin Film Position Sensitive Detectors (TFPSD) based on hydrogenated amorphous silicon (a-Si:H) technology, with a wide detection area (up to 80 × 80 mm). These sensors provide an alternative to Charge Coupled Devices (CCDs) when large inspection areas are needed, under a requirement to use simpler technology. In this paper we analyse the forward and reverse I-V characteristics in the dark and under illumination, as well as the device linearity of TFPSD. © 1994.

B
Fantoni, A., Vieira Martins M. R. "Bidimensional numerical analysis of a μc-Si:H P-I-N photodiode under local illumination." Materials Research Society Symposium - Proceedings. Vol. 467. 1997. 765-770. Abstract

The behaviour of a microcrystalline p-i-n junction locally illuminated with monochromatic radiation (incident power of 50 mW/cm2) is analysed by means of numerical experiences. The model used for the two-dimensional analysis of the transport properties of a μc-Si:H p-i-n photo-detector is based on the simultaneous solution of the continuity equations for holes and electrons together with the Poisson's equation. The solution is found on a rectangular domain, taking into account the dimension perpendicular to the junction plane and one on the parallel plane. The lateral effects occurring within the structure, due to the non-uniformity of the illumination, are outlined. The results we present show that the potential profile has a linear variation from the illuminated to the dark neutral region. The lateral components of the electric field and of the current density vectors reveal to be mainly localised inside the doped layers.

C
Fortunato, E., Soares Teodoro Guimarães Mendes Águas Silva Martins F. P. N. "Characteristics of a linear array of a-Si:H thin film position sensitive detector." Thin Solid Films. 337 (1999): 222-225. AbstractWebsite

The increasing demand in automation processes in finishing techniques also calls for automatic measurement and inspection methods. These methods ought to be installed as close as possible to the production process and they ought to measure the values needed in a safe and fast way, without disturbing the process itself. Simultaneously they should be free of wear and insensitive against mechanical perturbations. This approach can be reached by proper combination of the laser triangulation technique with an array of linear position sensitive detectors, able to supply information about the surface finishing of an object. This is the aim of this paper that envisages to present experimental results of the performances exhibited by such an array constituting 128 elements. The analogue information supplied by this array is processed by an analogue/digital converter, directly coupled to the array and whose information is computer processed, concerning the recognition of patterns and the processing of information collected over the object to be inspected. © 1999 Elsevier Science S.A. All rights reserved.

Fortunato, E., Nunes Costa Brida Ferreira Martins P. D. D. "Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates." Vacuum. 64 (2002): 233-236. AbstractWebsite

We report, for the first time, results on transparent ZnO:Al thin films deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (0 0 2) perpendicular to the substrate surface. The ZnO:Al thin films with 83% transmittance in the visible region and a resistivity as low as 3.6 × 10-2 Ωcm have been obtained, as deposited. The obtained results are comparable to those obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2002 Elsevier Science Ltd. All rights reserved.

Fortunate, E., Assunção Marques Ferreira Águas Pereira Martins V. A. I. "Characterization of transparent and conductive ZnO:Ga thin films produced by rf sputtering at room temperature." Materials Research Society Symposium - Proceedings. Vol. 763. 2003. 225-230. Abstract

Gallium-doped zinc oxide films were prepared by rf magnetron sputtering at room temperature as a function of the substrate-target distance. The best results were obtained for a distance of 10 cm, where a resistivity as low as 2.7×10-4 Ωcm, a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3×1021 cm-3 were achieved. The films are polycrystalline presenting a strong crystallographic c-axis orientation (002) perpendicular to the substrate. The films present an overall transmittance in the visible part of the spectra of about 85 %, in average. The low resistivity, accomplished with a high growth rate deposited at RT, enables the deposition of these films onto polymeric substrates for flexible applications.

Fortunato, E., Nunes Marques Costa Águas Ferreira Costa Martins P. A. D. "Characterization of zinc oxide thin films deposited by rf magnetron sputtering on Mylar substrates." Materials Research Society Symposium - Proceedings. Vol. 666. 2001. F3211-F3216. Abstract

Aluminium doped zinc oxide thin films (ZnO:Al) have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, morphological, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. The ZnO:Al thin films with 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×10-2 Ωcm have been obtained, as deposited. The obtained results are comparable to those ones obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices.

Ferreira, I., Fortunato Martins E. R. "Combining HW-CVD and PECVD techniques to produce a-Si:H films." Thin Solid Films. 427 (2003): 231-235. AbstractWebsite

Amorphous undoped a-Si:H films have been produced by hot wire plasma assisted chemical vapour deposition (HWPA-CVD), which combines the hot wire chemical vapour deposition (HW-CVD) and plasma enhanced chemical vapour deposition techniques. In this work we analyse the dissociation mechanism of the gas during the film growth in both processes with a quadrupole mass spectrometer. Besides that, the energy delivered to the gas dissociation is determined and correlated with the films properties. Thus, based on the results of the dissociated species for each deposition condition and process, we explain why the growth rate is enhanced when the filament temperature rises in HW-CVD process and why it decreases as r.f. power is enhanced in HWPA-CVD process. © 2002 Elsevier Science B.V. All rights reserved.

Ferreira, I., Cabrita Fortunato Martins A. E. R. "Composition and structure of silicon-carbide alloys obtained by hot wire and hot wire plasma assisted techniques." Vacuum. 64 (2002): 261-266. AbstractWebsite

In this work we present results concerning the composition and structure of intrinsic thin film silicon carbide alloys obtained by hot wire and hot wire plasma assisted techniques using ethylene as carbon gas source. The data show that by increasing the percentage of ethylene in the gas mixture from 14% to 60% the optical band gap is enhanced from 1.8 eV to 2.3 eV, for films produced by hot wire technique at a filament temperature of 2123K (1850°C). This is attributed to the increase of carbon incorporation, which was confirmed by the infrared spectra data where an increase is observed in the SiC stretching vibration mode ascribed to the peak located at around 750cm-1. On the other hand, the films produced by combining hot wire and rf plasma show a more efficient carbon incorporation. The SEM photographs of samples produced with hot wire technique reveal an amorphous structure, confirmed by micro-Raman spectroscopy data, while the samples produced with plasma assisting the process show a granular structure with grain sizes in the range of 100-200nm. © 2002 Elsevier Science Ltd. All rights reserved.

D
Fortunato, E.a, Brida Pereira Águas Silva Ferreira Costa Teixeira Martins D. a L. a. "Dependence of the strains and residual mechanical stresses on the performances presented by a-Si:H thin film position sensors." Advanced Engineering Materials. 4 (2002): 612-616. AbstractWebsite

The influence of residual stresses on the performances of large area position sensitive detectors produced on flexible substrates are presented here. For evaluating the residual stresses, two main techniques were used: An active optical triangulation and angle resolved scattering and the constant photocurrent method (CPM). From the results it was possible to correlate the stresses and the density of defects present in the films.

Fernandes, M.a, Vieira Martins M. a R. b. "Dynamic characterization of large area image sensing structures based on a-SiC:H." Materials Science Forum. 455-456 (2004): 86-90. AbstractWebsite

The working principle of silicon p-i-n structures with low conductivity (σd) doped layers as single element image sensors is based on the modulation, by the local illumination conditions of the photocurrent generated by a light beam scanning the active area of the device. A higher sensitivity is achieved using a wide band gap a-Si:C alloy in the doped layers, improving the light penetration into the intrinsic semiconductor and reducing the lateral currents in the structure, which are responsible by an image smearing effect observed in sensors with high σd doped layers. This work focuses on the transient response of such sensor and on the role of the carbon (C) content of the doped layers. A set of devices with different percentage of C incorporation in the doped layers is analyzed by measuring the scanner-induced photocurrent under different bias conditions, (ranging from -1.5V to 1V) in order to evaluate the response time.

E
Fortunato, Elvira, Carvalho Carlos Bicho Ana Martins Rodrigo N. "Effect of different TCO interfaces on the performances presented by hydrogenated amorphous silicon p-i-n solar cells." Conference Record of the IEEE Photovoltaic Specialists Conference. Vol. 1. 1994. 646-649. Abstract

In this paper we report results concerning the effect of the TCO interface on hydrogenated amorphous silicon (a-Si:H) p-i-n homojunction solar cells. Its correlation with dark current density-voltage (J-V) characteristics and spectral response, before and after while light-soaking degradation, is analysed. From this study, we conclude that the properties and stability of these devices are not only influenced by the a-Si:H film properties, but also by the properties of the transparent conductive electrode and its interface with the a-Si:H layer.

Figueiredo, V.a, Elangovan Gonçalves Barquinha Pereira Franco Alves Martins Fortunato E. a G. a. "Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper." Applied Surface Science. 254 (2008): 3949-3954. AbstractWebsite

Thin films of copper oxide were obtained through thermal oxidation (100-450 °C) of evaporated metallic copper (Cu) films on glass substrates. The X-ray diffraction (XRD) studies confirmed the cubic Cu phase of the as-deposited films. The films annealed at 100 °C showed mixed Cu-Cu2O phase, whereas those annealed between 200 and 300 °C showed a single cubic Cu2O phase. A single monoclinic CuO phase was obtained from the films annealed between 350 and 450 °C. The positive sign of the Hall coefficient confirmed the p-type conductivity in the films with Cu2O phase. However, a relatively poor crystallinity of these films limited the p-type characteristics. The films with Cu and CuO phases show n-type conductivity. The surface of the as-deposited is smooth (RMS roughness of 1.47 nm) and comprised of uniformly distributed grains (AFM and SEM analysis). The post-annealing is found to be effective on the distribution of grains and their sizes. The poor transmittance of the as-deposited films (<1%) is increased to a maximum of ∼80% (800 nm) on annealing at 200 °C. The direct allowed band gap is varied between 2.03 and 3.02 eV. © 2008 Elsevier B.V. All rights reserved.

Ferreira, I., Raniero Fortunato Martins L. E. R. "Electrical properties of amorphous and nanocrystalline hydrogenated silicon films obtained by impedance spectroscopy." Thin Solid Films. 511-512 (2006): 390-393. AbstractWebsite

Nanocrystalline hydrogenated silicon (nc-Si:H) thin films are generally accepted to be a two phase material-Si crystalline and Si:H amorphous. This work reports the use of impedance spectroscopy to determine the amorphous and crystalline electrical conductivity of a/nc-Si:H films obtained by hot wire chemical vapour deposition. Different relaxation time or time constants are detected, if the film is composed by inhomogeneous material, by measuring ac impedance in a wide range of frequencies. Relating the conduction mechanism of the film to a series of two RC circuits constituted by a resistance and a capacitor in parallel, we may determine distinct ac conductivities and correlate that to the crystalline, amorphous and interface components. The amorphous films analysed exhibit one ac conductivity component while for nanocrystalline films two ac conductivity components are observed. The average value of ac conductivities is in agreement with that of dc conductivity. © 2006.

Figueiredo, V.a, Elangovan Gonçalves Franco Alves Park Martins Fortunato E. a G. a. "Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature." Physica Status Solidi (A) Applications and Materials Science. 206 (2009): 2143-2148. AbstractWebsite

Copper oxide thin films were obtained by annealing (temperature ranging between 100 and 450 °C) the metallic Cu films deposited on glass substrates by e-beam evaporation. XRD studies confirmed that the cubic Cu phase of the asdeposited films changes into single cubic Cu 2Ophase and single monoclinic CuO phase, depending on the annealing conditions. The crystallite size is varied betweeñ12 and 31 nm. The lattice parameters of cubic Cu and Cu 2Ophases are estimated tõ3.60 and ̃4.26 Å , respectively. The films with Cu 2O phase showed p-type characteristics. The conductivity is decreased linearly with the decreasing temperature (1/T), which has confirmed the semiconductor nature of the deposited films. The calculated activation energy is varied between 0.10 and 0.16 eV. The surface microstructure is changed depending on the variation in the annealing temperature. The poor transmittance of the asdeposited films (<1%) is increased to a maximum of ̃80% (800 nm) on annealing at 200 °C. The estimated direct allowed band gap is varied between 1.73 and 2.89 eV. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Fortunate, E., Gonçalves De Carvalho Pimentel Lavareda Marques Martins A. C. N. "Enhancement of the electrical properties of ITO deposited on polymeric substrates by using a ZnO buffer layer." Materials Research Society Symposium Proceedings. Vol. 814. 2004. 231-236. Abstract

In this paper we present the effect of the insertion of a non-doped nanocrystalline zinc oxide/buffer layer on the electrical, optical and structural properties of indium tin oxide produced at room temperature by radio frequency plasma enhanced reactive thermal evaporation on polymeric substrates. The electrical resistivity of the ITO films is reduced by more than two orders of magnitude (4.5×10-1 to 2.9×10-3 Ωcm). From the Hall effect measurements it is observed that the large decrease associated to the electrical resistivity, is due to the increase associated to the Hall mobility. Concerning the optical properties no effect was observed, being the transmittance in the visible and near the infra red region always higher than 80%.

b Fortunato, E.a, Figueiredo Barquinha Elamurugu Barros Goņalves Park Hwang Martins V. a P. a. "Erratum: Thin-film transistors based on p-type Cu2 O thin films produced at room temperature (Applied Physics Letters (2010) 96 (192102))." Applied Physics Letters. 96 (2010). AbstractWebsite
n/a
Ferreira, I., Fortunato Martins E. R. "Ethanol vapour detector based in porous a-Si:H films produced by HW-CVD technique." Sensors and Actuators, B: Chemical. 100 (2004): 236-239. AbstractWebsite

In this work, we show the possibility to use undoped porous silicon (PS) thin films produced by hot wire chemical vapour deposition technique (HW-CVD) as ethanol detector. Silicon thins films produced by HW-CVD technique, under certain deposition conditions, have a porous structure [Vacuum 52 (1999) 147]. Therefore, in the presence of an alcohol, the OH group is adsorbed by the uncompensated bonds behaving as donor-like carriers leading to an increase in the current flowing through the material. This current enhancement is bias dependent in glass/ITO/i-a-Si:H/Al sensor and increases as the ethanol vapour pressure increases from 10-1mbar to atmospheric pressure. The response time of the current of the sensor and its recovery time are in the range of 10-50s at room temperature. Ethanol quantities above 50ppm can be detected. © Published by Elsevier B.V.

F
c d e Fortunato, E.a b, Pereira Águas Ferreira Martins L. a H. a. "Flexible a-Si: H position-sensitive detectors." Proceedings of the IEEE. 93 (2005): 1281-1286. AbstractWebsite

Flexible and large area (5 mm × 80 mm with an active length of 70 mm) position-sensitive detectors (PSDs) deposited onto polymeric substrates (polyimide - Kapton VN) have been fabricated. The optimized structure presented is based on a heterojunction of amorphous silicon (a-Si: H)/ZnO: Al. The sensors were characterized by spectral response, photocurrent dependence as a function of light intensity, and position detection measurements. The set of data obtained on one-dimensional PSDs based on the heterojunction show excellent performances with a maximum spectral response of 0.12 A/W at 500 nm and a nonlinearity of ±10% over 70-mm length. The produced sensors present a nonlinearity higher than those ones produced on glass substrates, due to the different thermal coefficients exhibited by the polymer and the a-Si: H film. In order to prove this behavior, it was measured the defect density obtained by the constant photocurrent method on a-Si: H thin films deposited on polymeric substrates and bent with different radii of curvature. © 2005 IEEE.

Fortunato, E., Ferreira Giuliani Martins I. F. R. "Flexible large area thin film position sensitive detectors." Sensors and Actuators, A: Physical. 86 (2000): 182-186. AbstractWebsite

Large area thin film position sensitive detectors based on amorphous silicon technology have been prepared on polyimide substrates using the conventional plasma-enhanced chemical vapour deposition. The sensors have been characterized by spectral response, light intensity dependence and linearity measurements in a bent state in order to evaluate the properties in real working conditions. The obtained one-dimensional (1D) position sensors with 10 mm width and 20 mm length present a non-linearity of ±1% which are comparable to the ones produced on glass substrates.

Fortunato, E., Pereira Águas Ferrira Martins L. H. I. "Flexible position sensitive photodetectors based on a-Si:H heterostructures." Sensors and Actuators, A: Physical. 116 (2004): 119-124. AbstractWebsite

This work describes the fabrication and characterization of an improved version of large area (5mm×80mm with an active length of 70mm) flexible position sensitive detectors deposited onto polymeric substrates (polyimide-Kapton® VN). The new configuration presented by the sensor is based on a heterostructure of a-Si:H/ZnO:Al. The sensors were characterized by spectral response, photocurrent dependence as a function of light intensity and position detection measurements. The set of data obtained on one-dimensional position sensitive detectors based on the heterostructure show excellent performances with a maximum spectral response of 0.12A/W at 500nm and a non-linearity of ±10% over 70mm length. The produced sensors present a non-linearity higher than those ones produced on glass substrates, due to the different thermal coefficients exhibited by the polymer and the amorphous silicon film. In order to prove this behaviour, it was measured the defect density obtained by the constant photocurrent method on amorphous silicon deposited on polymeric substrates bended with different radius of curvature. © 2004 Elsevier B.V. All rights reserved.

Fortunato, N.a, Jang Barquinha Nathan Martins J. b P. a. "Foreword." IEEE/OSA Journal of Display Technology. 9 (2013): 687. AbstractWebsite
n/a