Publications

Export 132 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Fortunato, E., Martins R. "Role of the collecting resistive layer on the static characteristics of 2D a-Si:H thin film position sensitive detector." Materials Research Society Symposium - Proceedings. Vol. 507. 1999. 303-308. Abstract

The aim of this work is to present an analytical model able to interpret the role of the thin collecting resistive layer on the static performances exhibited by 2D amorphous silicon hydrogenated pin thin film position sensitive detectors. In addition, experimental results concerning the device linearity and spatial resolution are presented and checked against the predicted values of the analytical model proposed.

Fortunato, E., Martins R. "Role of the collecting resistive layer on the static characteristics of a 1D a-Si:H thin film position sensitive detector." Review of Scientific Instruments. 67 (1996): 2702-2707. AbstractWebsite

The aim of this work is to present an analytical model able to interpret the role of the thin collecting resistive layer on the static performances exhibited by 1D amorphous silicon hydrogenated p-i-n thin film position sensitive detectors. The data obtained show that the devices present a linearity and a spatial resolution, of respectively, better than 99% and 20 μm for a spatial detection limit of about 80 mm, highly dependent on the characteristics exhibited by the collecting resistive layer that should have sheet resistivities in the range of 10 to 103 Ω/sq, as predicted by the model proposed. © 1996 American Institute of Physics.

Fortunato, E., Pimentel Gonçalves Marques Martins A. A. A. "High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature." Thin Solid Films. 502 (2006): 104-107. AbstractWebsite

In this paper we present results of indium zinc oxide deposited at room temperature by rf magnetron sputtering, with an electron mobility as high as 60 cm2/Vs. The films present a resistivity as low as 5 × 10 - 4 Ω cm with an optical transmittance of 85%. The structure of these films seems to be polymorphous (mix of different amorphous and nanocrystalline phases from different origins) as detected from XRD patterns with a smooth surface and from SEM micrographs, is highly important to ensure a long lifetime when used in display devices. © 2005 Elsevier B.V. All rights reserved.

Fortunato, N.a, Jang Barquinha Nathan Martins J. b P. a. "Foreword." IEEE/OSA Journal of Display Technology. 9 (2013): 687. AbstractWebsite
n/a
Fortunato, E., Gonçalves Pimentel Barquinha Gonçalves Pereira Ferreira Martins A. A. P. "Zinc oxide, a multifunctional material: From material to device applications." Applied Physics A: Materials Science and Processing. 96 (2009): 197-205. AbstractWebsite

In this paper we report on some of the recent advances in transparent thin film oxide semiconductors, specifically zinc oxide produced by radio frequency magnetron sputtering at room temperature, with multifunctional properties. By controlling the deposition parameters it is possible to produce undoped material with electronic semiconductor properties, or by doping it to get either n-type or p-type semiconductor behavior. In this work we refer to our experience in producing n-type doped zinc oxide as transparent electrode to be used in optoelectronic applications such as solar cells and position sensitive detectors, while the undoped zinc oxide can be used as active layer of fully transparent thin film transistors. © 2009 Springer-Verlag.

Fortunato, E., Vieira Ferreira Carvalho Lavareda Martins M. L. C. "Large area position sensitive detector based on amorphous silicon technology." Materials Research Society Symposium Proceedings. Vol. 297. 1993. 981-986. Abstract

We have developed a rectangular dual-axis large area Position Sensitive Detector (PSD), with 5 cm×5 cm detection area, based on PIN hydrogenated amorphous silicon (a-Si:H) technology, produced by Plasma Enhanced Chemical Vapor Deposition (PECVD). The metal contacts are located in the four edges of the detected area, two of them located on the back side of the ITO/PIN/Al structure and the others two located in the front side. The key factors of the detectors resolution and linearity are the thickness uniformity of the different layers, the geometry and the contacts location. Besides that, edge effects on the sensor's corner disturb the linearity of the detector. In this paper we present results concerning the linearity of the detector as well as its optoelectronic characteristics and the role of the i-layer thickness on the final sensor performances.

Fortunato, E., Nunes Marques Costa Águas Ferreira Costa Martins P. A. D. "Highly conductive/transparent ZnO:Al thin films deposited at room temperature by rf magnetron sputtering." Key Engineering Materials. 230-232 (2002): 571-574. AbstractWebsite

Transparent conducting ZnO:Al thin films have been deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by r.f. magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface. As deposited ZnO:Al thin films have an 85% transmittance in the visible and infra-red region and a resistivity as low as 3.6×10-2 Ωcm. The obtained results are comparable to those ones obtained on glass substrates, opening a new field for low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices.

Fortunato, E., Nunes Marques Costa Águas Ferreira Costa Martins P. A. D. "Thin film metal oxide semiconductors deposited on polymeric substrates." Materials Research Society Symposium - Proceedings. Vol. 666. 2001. F1131-F1136. Abstract

Highly textured transparent conducting ZnO:Al thin films have been prepared by r.f. magnetron sputtering. The films were deposited on polyester (Mylar type D, 100 μm thickness) and glass substrates at room temperature. Surface stylus profiling, X-ray diffraction, scanning electron microscopy, transmission electron microscope and Hall effect measurements as a function of temperature have been used to characterize the produced films. The samples are polycrystalline with a hexagonal wurtzke structure and a strong crystallographic c-axis orientation (002) perpendicular to the substrate surface (columnar structure). The ZnO:Al thin films with a resistivity as low 3.6×10-2 Ωcm have been obtained, as deposited.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. Oxide Semiconductors: From Materials to Devices. Transparent Electronics: From Synthesis to Applications., 2010. AbstractWebsite
n/a
Fortunato, E., Lavareda Vieira Martins G. M. R. "Thin film position sensitive detector based on amorphous silicon p-i-n diode." Review of Scientific Instruments. 65 (1994): 3784-3786. AbstractWebsite

The application of hydrogenated amorphous silicon (a-Si:H) to optoelectronic devices are now well established as a viable low cost technology and is presently receiving much interest. Taking advantage of the properties of a-Si:H based devices, single and dual axis large area (up to 80×80 mm 2) thin film position sensitive detectors (TFPSD) based on a-Si:H p-i-n diodes have been developed, produced by plasma enhanced chemical vapor deposition. In this study, the main optoelectronic properties presented by the TFPSD as well as their behavior under operation conditions, concerning its linearity and signal to noise ratio, are reported. © 1994 American Institute of Physics.

Fortunato, E., Barquinha Pimentel Pereira Gonçalves Martins P. A. L. "Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs." Physica Status Solidi - Rapid Research Letters. 1 (2007): R34-R36. AbstractWebsite

In this paper we demonstrate the use of amorphous binary In2O3-ZnO oxides simultaneously as active channel layer and as source/drain regions in transparent thin film transistor (TTFT), processed at room temperature by rf sputtering. The TTFTs operate in the enhancement mode and their performances are thickness dependent. The best TTFTs exhibit saturation mobilities higher than 102 cm2/Vs, threshold voltages lower than 6 V, gate voltage swing of 0.8 V/dec and an on/off current ratio of 107. This mobility is at least two orders of magnitude higher than that of conventional amorphous silicon TFTs and comparable to or even better than other polycrystal-line semiconductors. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Fortunato, E., Pereira Águas Ferrira Martins L. H. I. "Flexible position sensitive photodetectors based on a-Si:H heterostructures." Sensors and Actuators, A: Physical. 116 (2004): 119-124. AbstractWebsite

This work describes the fabrication and characterization of an improved version of large area (5mm×80mm with an active length of 70mm) flexible position sensitive detectors deposited onto polymeric substrates (polyimide-Kapton® VN). The new configuration presented by the sensor is based on a heterostructure of a-Si:H/ZnO:Al. The sensors were characterized by spectral response, photocurrent dependence as a function of light intensity and position detection measurements. The set of data obtained on one-dimensional position sensitive detectors based on the heterostructure show excellent performances with a maximum spectral response of 0.12A/W at 500nm and a non-linearity of ±10% over 70mm length. The produced sensors present a non-linearity higher than those ones produced on glass substrates, due to the different thermal coefficients exhibited by the polymer and the amorphous silicon film. In order to prove this behaviour, it was measured the defect density obtained by the constant photocurrent method on amorphous silicon deposited on polymeric substrates bended with different radius of curvature. © 2004 Elsevier B.V. All rights reserved.

Fortunato, E., Soares Lavareda Martins F. G. R. "Thin films applied to integrated optical position-sensitive detectors." Thin Solid Films. 317 (1998): 421-424. AbstractWebsite

We have developed a linear thin film position-sensitive detector with 128 elements, based on p.i.n. a-Si:H devices. The incorporation of this sensor into an optical inspection camera makes possible the acquisition of three-dimensional information of an object, using laser triangulation methods. The main advantages of this system, when compared with the conventional charge-coupled devices, are the low complexity of hardware and software used, and that the information can be continuously processed (analogic detection). In this paper, we present the most significant characteristics of the singular one-dimensional thin film position-sensitive detectors that form part of the linear array with 128 sensors. © 1998 Elsevier Science S.A.

b Fortunato, E.a, Barros Barquinha Figueiredo Park Hwang Martins R. a P. a. "Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing." Applied Physics Letters. 97 (2010). AbstractWebsite

P-type thin-film transistors (TFTs) using room temperature sputtered SnOx (x<2) as a transparent oxide semiconductor have been produced. The SnOx films show p-type conduction presenting a polycrystalline structure composed with a mixture of tetragonal Β-Sn and α -SnOx phases, after annealing at 200 °C. These films exhibit a hole carrier concentration in the range of ≈ 1016 - 1018 cm-3; electrical resistivity between 101 - 102 cm; Hall mobility around 4.8 cm2 /V s; optical band gap of 2.8 eV; and average transmittance ≈85% (400 to 2000 nm). The bottom gate p-type SnOx TFTs present a field-effect mobility above 1 cm2 /V s and an ON/OFF modulation ratio of 103. © 2010 American Institute of Physics.

Fortunato, E.a, Lavareda Martins Soares Fernandes G. a R. a. "Large-area 1D thin-film position-sensitive detector with high detection resolution." Sensors and Actuators: A. Physical. 51 (1995): 135-142. AbstractWebsite

The aim of this work is to present the main optoelectronic characteristics of large-area one-dimensional position-sensitive detectors (1D TFPSDs) based on amorphous silicon (a-Si) p-i-n diodes. From that, the device resolution, response time and detectivity (defined as being the reciprocal of the noise equivalent power pattern) are derived and discussed concerning the field of applications of the 1D TFPSDs. © 1996.

Fortunato, E., Barquinha Gonçalves Pereira Martins P. G. L. "High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors." Solid-State Electronics. 52 (2008): 443-448. AbstractWebsite

Staggered bottom gate transparent thin film transistors (TTFTs) have been produced by rf magnetron sputtering at room temperature, using amorphous indium zinc oxide (IZO) semiconductor, for the channel as well as for the drain and source regions. The obtained TTFTs operate in the enhancement mode with threshold voltages of 2.4 V, saturation mobility of 22.7 cm2/V s, gate voltage swing of 0.44 V/dec and an ON/OFF current ratio of 7 × 107. The high performances presented by these TTFTs produced at room temperature, make these TFTs a promising candidate for flexible, wearable, disposable portable electronics as well as battery-powered applications. © 2007 Elsevier Ltd. All rights reserved.

Fortunato, E., Gonçalves Marques Assunção Ferreira Águas Pereira Martins A. A. V. "Gallium zinc oxide coated polymeric substrates for optoelectronic applications." Materials Research Society Symposium - Proceedings. Vol. 769. 2003. 291-296. Abstract

Highly transparent and conductive ZnO:Ga thin films were produced by rf magnetron sputtering at room temperature on polyethylene naphthalate substrates. The films present a good electrical and optical stability, surface uniformity and a very good adhesion to the polymeric substrates. The lowest resistivity obtained was 5×10-4 Ωcm with a sheet resistance of 15 Ω/sqr and an average optical transmittance in the visible part of the spectra of 80%. It was also shown that by passivating the polymeric surface with a thin SiO2 layer, the electrical and structural properties of the films are improved nearly by a factor of 2.

Fortunato, E., Nunes Costa Brida Ferreira Martins P. D. D. "Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates." Vacuum. 64 (2002): 233-236. AbstractWebsite

We report, for the first time, results on transparent ZnO:Al thin films deposited on polyester (Mylar type D, 100 μm thickness) substrates at room temperature by magnetron sputtering. The structural, optical and electrical properties of the deposited films have been studied. The samples are polycrystalline with a hexagonal wurtzite structure and a strong crystallographic c-axis orientation (0 0 2) perpendicular to the substrate surface. The ZnO:Al thin films with 83% transmittance in the visible region and a resistivity as low as 3.6 × 10-2 Ωcm have been obtained, as deposited. The obtained results are comparable to those obtained on glass substrates, opening a new field of low cost, light weight, small volume, flexible and unbreakable large area optoelectronic devices. © 2002 Elsevier Science Ltd. All rights reserved.

Fortunato, E.M.C., Brida Ferreira Águas Nunes Cabrita Giuliani Nunes Maneira Martins D. I. M. M. "Large area flexible amorphous silicon position sensitive detectors." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A1271-A1276. Abstract

Large area thin film position sensitive detectors based on amorphous silicon technology have been prepared on polyimide substrates using the conventional plasma enhanced chemical vapour deposition technique. The sensors have been characterised by spectral response, illuminated I-V characteristics and position detectability measurements. The obtained one dimensional position sensors with 5 mm wide and 60 mm long present a maximum spectral response at 600 nm, an open circuit voltage of 0.6 V° and a position detectability with a correlation of 0.9989 associated to a standard deviation of 1 × 10-2, comparable to those ones produced on glass substrates. The surface of the sensors at each stage of fabrication was investigated by Atomic Force Microscopy.

Fortunato, Elvira, Martins Rodrigo. "New materials for large-area position-sensitive detectors." Sensors and Actuators, A: Physical. 68 (1998): 244-248. AbstractWebsite

Large-area thin-film position-sensitive detectors (TFPSDs) using the hydrogenated amorphous silicon (a-Si:H) technology are presented. The detection accuracy of these devices (lengths of about 80 mm) is better than ±0.5% of the value of the full scale of the sensor, the spatial resolution is better than ±20 μm, the non-linearities measured are below ±2% and the frequency response is in the range of a few kilohertz, compatible with the sampling frequency of most electromechanical assembling/control systems. The obtained results are quite promising regarding the application of these sensors to a wide variety of optical inspection systems.

Fortunato, E., Martins R. "Where science fiction meets reality? With oxide semiconductors!" Physica Status Solidi - Rapid Research Letters. 5 (2011): 336-339. AbstractWebsite

Transparent electronics is today one of the most advanced topics for a wide range of device applications, where the key components are wide band gap semiconductors, where oxides of different origin play an important role, not only as passive components but also as active components similar to what we observe in conventional semiconductors. As passive components they include the use of these materials as dielectrics for a wide range of electronic devices and also as transparent electrical conductors for use in several optoelectronic applications, such as liquid crystal displays, organic light emitting diodes, solar cells, optical sensors etc. As active materials, they exploit the use of truly electronic semiconductors where the main emphasis is being put on transparent thin film transistors, light emitting diodes, lasers, ultraviolet sensors and integrated circuits among others. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Fortunato, E., Soares Lavareda Martins F. G. R. "New linear array thin film position sensitive detector (LTFPSD) for 3D measurements." Materials Research Society Symposium - Proceedings. Vol. 377. 1995. 797-802. Abstract

A Linear array Thin Film Position Sensitive Detector (LTFPSD) based on hydrogenated amorphous silicon (a-Si:H) is proposed for the first time, taking advantage of the optical properties presented by a-Si:H devices we have developed a LTFPSD with 128 integrated elements able to be used in 3D inspections/measurements. Each element consists on an one-dimensional TFPSD, based on a p.i.n. diode produced in a conventional PECVD system, where the doped layers are coated with thin resistive layers to establish the required device equipotentials. By proper incorporation of the LTFPSD into an optical inspection camera it will be possible to acquire information about an object/surface, through the optical cross-section method. The main advantages of this system, when compared with the conventional CCDs, are the low complexity of hardware and software used and that the information can be continuously processed (analogue detection).

Fortunato, E., Correia Barquinha Pereira Goncalves Martins N. P. L. "High-performance flexible hybrid field-effect transistors based on cellulose fiber paper." IEEE Electron Device Letters. 29 (2008): 988-990. AbstractWebsite

In this letter, we report for the first time the use of a sheet of cellulose-fiber-based paper as the dielectric layer used in oxide-based semiconductor thin-film field-effect transistors (FETs). In this new approach, we are using the cellulose-fiber-based paper in an "interstrate"structure since the device is built on both sides of the cellulose sheet. Such hybrid FETs present excellent operating characteristics such as high channel saturation mobility (> 30 cm2Vs), drain-source current on/off modulation ratio of approximately 104, near-zero threshold voltage, enhancement n-type operation, and subthreshold gate voltage swing of 0.8 V/decade. The cellulose-fiber-based paper FETs' characteristics have been measured in air ambient conditions and present good stability, after two months of being processed. The obtained results outpace those of amorphous Si thin-film transistors (TFTs) and rival with the same oxide-based TFTs produced on either glass or crystalline silicon substrates. The compatibility of these devices with large-scale/large-area deposition techniques and low-cost substrates as well as their very low operating bias delineates this as a promising approach to attain high-performance disposable electronics like paper displays, smart labels, smart packaging, RFID, and point-of-care systems for self-analysis in bioapplications, among others. © 2008 IEEE.

Fortunato, E., Pimentel Gonçalves Marques Martins A. A. A. "High mobility nanocrystalline indium zinc oxide deposited at room temperature." Materials Research Society Symposium Proceedings. Vol. 811. 2004. 437-442. Abstract

In this paper we present results of indium doped zinc oxide deposited at room temperature by rf magnetron sputtering, with electron mobility as high as 60 cm2/Vs. The films present a resistivity as low as 5×10 -4 Ωcm with an optical transmittance of 85%. The structure of these films look-like polymorphous (mixed of different amorphous and nanocrystalline phases from different origins) as detected from XRD patterns (no clear peak exists) with a high smooth surface, as detected from SEM micrographs, highly important to ensure long life time when used in display devices.

Fortunato, E.a, Assunção Gonçalves Marques Águas Pereira Ferreira Vilarinho Martins V. a A. a. "High quality conductive gallium-doped zinc oxide films deposited at room temperature." Thin Solid Films. 451-452 (2004): 443-447. AbstractWebsite

Transparent and highly conducting gallium-doped zinc oxide films were successfully deposited by rf sputtering at room temperature. The lowest resistivity achieved was 2.6×10-4 Ω cm for a thickness of 1100 nm (sheet resistance ≈1.6 Ω/sq), with a Hall mobility of 18 cm2/Vs and a carrier concentration of 1.3×1021 cm-3. The films are polycrystalline with a hexagonal structure and a strongly preferred orientation along the c-axis. A linear dependence between the mobility and the crystallite size was obtained. The films present a transmittance in the visible spectra between 80 and 90% and a refractive index of approximately 2, which is very close to the value reported for bulk material. © 2003 Elsevier B.V. All rights reserved.