Publications

Export 52 results:
Sort by: [ Author  (Asc)] Title Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Á
Águas, H., Pereira Costa Barquinha Pereira Fortunato Martins S. D. P. "3 dimensional polymorphous silicon based metal-insulator-semiconductor position sensitive detectors." Thin Solid Films. 515 (2007): 7530-7533. AbstractWebsite

In this work we investigate the properties of a polymorphous silicon (pm-Si:H) metal-insulator-semiconductor (MIS) structure used in 3D position sensitive detectors (PSD). For the first time a 3D sensor made-up by pm-Si:H/SiO2/Au layers is presented. MIS structures present several advantages over p-i-n structures, such as easier fabrication, fast response time and higher resolution. The 1D MIS PSD that constitute the array were extensively studied aiming its application in 3D pattern recognition. The results obtained show that MIS PSD can achieve non-linearities below 2% and sensitivities of 3.2 μA/cm over 6 mm length sensors. The miniaturization of the sensors length to arrays of 6 and 16 mm, respectively showed average non-linearities of about 1.9% for the 16 mm sensor which proved to be the best solution for this MIS structure. © 2006 Elsevier B.V. All rights reserved.

Águas, H.a, Pereira Goullet Silva Fortunato Martins L. a A. b. "Correlation between the Tunnelling Oxide and I-V Curves of MIS Photodiodes." Materials Research Society Symposium - Proceedings. Vol. 762. 2003. 217-222. Abstract

In this work we present results of a study performed on MIS diodes with the following structure: substrate (glass) / Cr (2000Å) / a-Si:H n + (400Å) / a-Si:H i (5500Å) / oxide (0-40Å) / Au (100Å) to determine the influence of the oxide passivation layer grown by different techniques on the electrical performance of MIS devices. The results achieved show that the diodes with oxides grown using hydrogen peroxide present higher rectification factor (2×106) and signal to noise (S/N) ratio (1×107 at -1V) than the diodes with oxides obtained by the evaporation of SiO2, or by the chemical deposition of SiO 2 by plasma of HMDSO (hexamethyldisiloxane), but in the case of deposited oxides, the breakdown voltage is higher, 30V instead of 3-10 V for grown oxides. The ideal oxide thickness, determined by spectroscopic ellipsometry, is dependent on the method used to grow the oxide layer and is in the range between 6 and 20 Å. The reason for this variation is related to the degree of compactation of the oxide produced, which is not relevant for applications of the diodes in the range of ± 1V, but is relevant when high breakdown voltages are required.

Águas, H., Nunes Fortunato Silva Silva Figueiredo Soares Martins P. E. R. "Hydrogenated amorphous silicon / ZnO shottky heterojunction for position sensitive detectors." Materials Research Society Symposium - Proceedings. Vol. 664. 2001. A2661-A2666. Abstract

In this work a new structure is proposed for position sensitive detectors consisting of glass/Cr/aSi:H(n+)/a-Si:H(i)/ZnO, where the ZnO forms an heterojunction with the a-Si:H(i). The results show that this structure works with success in the fabrication of linear position sensitive detectors. The devices present a good nonlinearity of ≈ 2% and a good sensitivity to the light intensity. The main advantages of this structure over the classical p-i-n are an easier to built topology and a higher yield due to a better immunity to the a-Si:H pinholes, since the ZnO does not diffuse so easily into a-Si:H as the metal does, which are the cause of frequent failure in the p-i-n devices due to short-circuits caused by the deposition of the metal over the a-Si:H. In this structure the illumination is made directly on the ZnO, so a transparent substrate is not needed and a larger range of substrates can be used.

Águas, H., Silva Viegas Pereira Fortunato Martins R. J. C. M. "Study of environmental degradation of silver surface." Physica Status Solidi (C) Current Topics in Solid State Physics. 5 (2008): 1215-1218. AbstractWebsite

To evaluate the evolution of a dark film formation on silver surface objects, several coupons were catalogued and place inside a museum, located in an urban area. The changes on these samples were measured by spectroscopic ellipsometry, in periods of months. This technique allows the reduction of the coupons exposure time, in several months, due to its high sensitivity to surface modifications, with acceptable results for the evaluation of its degradation. The thicknesses of the degradation layers and the optical properties of silver oxide, chloride and sulphide reference samples were determined using a mixture of Tauc-Lorentz and Drude models. The composition of the silver corrosion layer was determined by fitting the layer using a Bruggeman Effective Medium Approximation (BEMA) of the three products plus voids. It was found that the thickness of the layer depends in the placement of the coupons, namely, inside or outside displayers. The average film thickness after 6 months was of 180 Å and 280 Å, inside and outside the displayers, respectively. The main compounds found in the layers were the silver chlorides and sulphides, which composition changed with the thickness of the layer, and the exposition time. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.

Águas, H.a, Goullet Pereira Fortunato Martins A. b L. a. "Effect of the tunnelling oxide thickness and density on the performance of MIS photodiodes." Thin Solid Films. 451-452 (2004): 361-365. AbstractWebsite

In this work we present results of a study performed on metal-insulator-semiconductor (MIS) diodes with the following structure: substrate (glass)/Cr (2000 Å)/a-Si:H n+(400 Å)/a-Si:H i (5500 Å)/oxide (0-40 Å)/Au (100 Å) to determine the influence of the oxide passivation layer grown by different techniques on the electrical performance of MIS devices. The results achieved show that the diodes with oxides grown using hydrogen peroxide present higher rectification factor (2×106) and signal to noise (S/N) ratio (1×10 7 at -1 V) than the diodes with oxides obtained by the evaporation of SiO2, or by the chemical deposition of SiO2 by plasma of hexamethyldisiloxane. However, in the case of deposited oxides, the breakdown voltage is higher, 30 V instead of 3-10 V for grown oxides. The ideal oxide thickness, determined by spectroscopic ellipsometry, is dependent on the method used to grow the oxide layer and is in the range between 6 and 20 Å. The reason for this variation is related to the degree of compactation of the oxide produced, which is not relevant for applications of the diodes in the range of ±1 V, but is relevant when high breakdown voltages are required. © 2003 Elsevier B.V. All rights reserved.

Águas, H., Ram Araújo Gaspar Vicente Filonovich Fortunato Martins Ferreira S. K. A. "Silicon thin film solar cells on commercial tiles." Energy and Environmental Science. 4 (2011): 4620-4632. AbstractWebsite

Nanostructured silicon single junction thin film solar cells were deposited on commercial red clay roof tiles with engobe surfaces and earthenware wall tiles with glazed surfaces, with a test area of 24 mm 2. We studied the influence of the type of substrate tile, back contact, buffer layer and SiO x passivation layer on the optoelectronic performance of the solar cells. Despite the fact that typical micrometre-sized defects on the surfaces of the tiles and the porous nature of the ceramic substrates make deposition of homogeneous thin films on them quite challenging, we have been able to achieve a cell efficiency of 5% and a quantum efficiency of 80% on non-fully optimized cells on commercial tiles. The method is industrially employable utilizing pre-existing plasma-enhanced chemical vapour deposition technologies. The cost-effectiveness and industrial feasibility of the technique are discussed. Our study shows that photovoltaic tiles can combine energy generation with architectural aesthetics leading to significant implications for advancement in building integrated photovoltaics. © 2011 The Royal Society of Chemistry.

Águas, H., Perreira Silva Fortunato Martins L. R. J. C. "Effect of the tunnelling oxide growth by H2O2 oxidation on the performance of a-Si:H MIS photodiodes." Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 109 (2004): 256-259. AbstractWebsite

In this work metal-insulator-semiconductor (MIS) photodiodes with a structure: Cr/a-Si:H(n+)/a-Si:H(i)/oxide/Au were studied, where the main objective was to determine the influence of the oxide layer on the performance of the devices. The results achieved show that their performance is a function of both oxide thickness and oxide density. The a-Si:H oxidation method used was the immersion in H2O2 solution. By knowledge of the oxide growth process it was possible to fabricate photodiodes exhibiting an open circuit voltage of 0.65V and short circuit current density under AM1.5 illumination of 11mA/cm2, with a response times less than 1μs for load resistance <400Ω, and a signal to noise ratio of 1×107. © 2003 Elsevier B.V. All rights reserved.

Águas, H., Pereira Raniero Fortunato Martins L. L. E. "MIS photodiodes of polymorphous silicon deposited at higher growth rates by 27.12 MHz PECVD discharge." Materials Science Forum. 455-456 (2004): 73-76. AbstractWebsite

This work presents a comparative study between MIS photodiodes produced using high quality amorphous silicon (a-Si:H), deposited by PECVD at 2Å/s, using 13.56 MHz frequency and polymorphous silicon (pm-Si) deposited at 3Å/s using a 27.12 MHz frequency. The results show that the pm-Si:H outperforms the a-Si:H MIS photodiodes by having a rectification ratio of 107, and photosensitivity at AM1.5 conditions of 107, under 1V reverse bias. Apart from that, the pm-Si:H photodiode presents a higher open circuit voltage and better fill factor than a-Si:H MIS photodiode. These results prove that quality devices can be produced at high growth rates by using pm-Si:H. In this work the photodiode performances were correlated to the films properties, aiming to determine the characteristics responsible for the performances exhibited by the pm-Si:H devices.

Águas, H., Fortunato Pereira Silva Martins E. L. V. "Role of the i-layer thickness in the performance of a-Si:H Schottky barrier photodiodes." Key Engineering Materials. 230-232 (2002): 587-590. AbstractWebsite

In this work we present the current/voltage characteristics of Si:H/Pd Schottky structures using high quality, low defect density amorphous silicon (a-Si:H) deposited by a non-conventional, modified triode PECVD method. This new configuration allows the deposition of compact and high quality a-Si:H with a photosensitivity of 107, yielding films with low bulk defects. AFM measurements also revealed that these films have a very smooth surface allowing a low defect interface between the metal and the a-Si:H. As a result, we show that by using these a-Si:H films and by proper control of the i-layer thickness the reverse dark current of the diode can be highly reduced achieving signal to noise ratio of 106, surpassing the results usually achieved by p-i-n structures.

Águas, H., Martins Fortunato R. E. "Plasma diagnostics of a PECVD system using different R.F. electrode configurations." Vacuum. 56 (2000): 31-37. AbstractWebsite

This work aims to study the role of the r.f. electrode configuration on the plasma characteristics of a PECVD asymmetric reactor. The configurations used are the usual diode configuration, the triode configuration and a new configuration that we named short-circuited grid electrode (SGE). The plasma generated was characterized with the use of a Langmuir probe and an impedance probe. We demonstrate that the plasma parameters are highly dependent on the reactor geometry. The results achieved show that by changing the r.f. electrode configuration the DC self-bias varies from about 100 to close to 0 V. This variation causes changes in the ion bombardment of the reactor surfaces, which can affect the growing of the films deposited. We also demonstrate that for the SGE configuration the area seen by the plasma does not correspond to the exposed physical area of the electrode, and we suggest a model to explain this phenomenon.

Águas, H., Pereira Raniero Fortunato Martins L. L. E. "Effect of the load resistance in the linearity and sensitivity of MIS position sensitive detectors." Materials Research Society Symposium Proceedings. Vol. 862. 2005. 691-696. Abstract

It is experimentally known that the linearity and sensitivity of the position sensitive detectors (PSD) are dependent on the resistance of the collecting layer and of the load resistance, mainly if the detection is based on the measurement of the photo-lateral voltage. To determine the value of the load resistance to be used in metal - insulator - semiconductor (MIS) PSDs structures that lead to the maximum value of sensitivity and linearity, we propose an electrical model through which it is able to simulate the proper sensor response and how the load resistance influence the results obtained. This model is valid for PSDs where the resistance of the collecting resistive layer is quite low (≤ 500 Ω), leading to a low output impedance. Under these conditions we conclude that the value of the load resistance should be of about 1 kΩ in order to achieve a good compromise between the linearity and the sensitivity of the PSD. This result is in agreement with the set of experiments performed. © 2005 Materials Research Society.

Águas, H.M.B., Fortunato Cabrita Silva Tonello Martins E. M. C. A. "Correlation between surface/interface states and the performance of MIS structures." Materials Research Society Symposium - Proceedings. Vol. 609. 2000. A1211-A1216. Abstract

In order to understand the kinetics of formation of interface/surface states and its correlation on the final device performance, a preliminary study was performed on MIS structures, before and after surface oxidation/passivation, using different oxidation techniques and oxides: thermal (in air), chemical (in H2O2) and oxygen plasma. The devices used in this work are based on a glass/Cr/a-Si:H(n+)/a-Si:H(i)/SiOx/Pd structures, where the amorphous silicon intrinsic layer (i a-Si:H) with a photosensitivity of 107 was deposited by a modified plasma enhanced chemical vapour deposition (PECVD) triode system. The electrical properties of a-Si:H MIS structures were investigated by measuring their diode current-voltage characteristics in the dark and under illumination as well as the spectral response, as a function of the various oxidation techniques. Infrared spectroscopy and spectroscopic ellipsometry were used as a complementary tool to characterise the oxidised surface.

A
Aguas, H., Pereira Costa Raniero Fortunato Martins L. D. L. "Role of the oxide layer on the performances of a-Si:H schottky structures applied to PDS fabrication." Materials Research Society Symposium Proceedings. Vol. 910. 2007. 415-420. Abstract

In this work we present results of studies performed on Schottky and metal-insulator-semiconductor (MIS) position sensitive detectors (PSD) structures: substrate (glass)/ Cr (300 nm) / a-Si:H [n] (37 nm) / a-Si:H [i] (600 nm) / SiO2 (1.5 nm - for the MIS) / Au (7 nm). The effect of the interfacial oxide layer between Au and a-Si:H, for the MIS structures, was studied and compared with the Schottky, in order to determine how beneficial it could be for device performances and time degradation. For doing so, the Au thickness of 70Å was deposited by thermal evaporation on an oxide free (Schottky) and oxidized (≈20Å) (MIS) a-Si:H surfaces. These structures were characterized by SIMS, RBS, SEM and AFM in order to correlate the obtained diffusion profile of Au at the interface and the topography with the presence of the oxide at the interface. The results show that the Au inter-diffuses very easily in the oxide free a-Si:H surface, even at room temperature, degrading the devices performance. On the other hand, the MIS structures, with their interfacial oxide present no structural changes after annealing and the PSD produced are stable. We believe that this effect is associated with the barrier effect of the interfacial oxide that prevents the Au diffusion. The optimized 1D MIS sensors are stable and exhibit a linearity error as low as 0.8 % and sensitivities of 33 mV/cm for a 5 mW spot beam intensity at a wavelength of 532 nm, while the Schottky sensors showed a time degradation of their characteristics. © 2006 Materials Research Society.

Albarran, T., Lopes Cabeça Martins Mourão L. J. R. "Preliminary budget methodology for reverse engineering applications using laser scanning." Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping: Virtual and Rapid Manufacturing Advanced Research Virtual and Rapid Prototyping. 2007. 231-235. Abstract

The driving force behind the work herein presented is the importance of budgeting in a competitive market. The problem at hands is the creation of a budgeting methodology for reverse engineering applications, involving laser scanning, that has the ability to generate budgets for different customer accuracy requirements and for parts of different morphologic characteristics, such as: shape, dimension and/or detail complexity. A breakup approach was used to implement the methodology: the reverse engineering process was broken in nine basic identified steps and elementary sources of cost were defined at the different reverse engineering stages as well. Particular budgeting methodologies for each step of the process were created. The obtained results so far point to the possibility of creating a complete budgeting system based on the proposed methodology. © 2008 Taylor & Francis Group.

Alendouro, M.S.J.G.a, Monteiro Figueiredo Martins Silva Ferro Fernandas R. C. C. a. "Microstructural characterization and properties of a glass and a glassceramic made from municipal incinerator bottom ash." Materials Science Forum. 455-456 (2004): 827-830. AbstractWebsite

A glass was made using bottom ash produced by a Portuguese municipal solid waste (MSW) incinerator. The bottom ash was the single batch material used in the formation of the glass, which was obtained through a conventional melt-quenching method. The glass was then converted to glass-ceramic for further recycling to construction materials. After submitting the glass samples to several heat treatments, between 820 and 1050°C and during different times, it was verified that the optimum heat treatment schedule for the ceramization of the glass was at 1000°C for 10h, as confirmed by microstructural observation and by X-ray diffraction. The major crystalline phases precipitated in the glass-ceramic were wollastonite (CaSiO3) and diopside (Ca(Mg,Al)(Si,Al)2O6). Microstructural analysis of the glass-ceramic revealed that the crystalline phases were present as dendrites and fiber-like structures that were homogeneously distributed in the material. The glassceramic showed good mechanical properties with a hardness of 5.6 MPa and a bending strength of 101 MPa. This material had a density of 2.8 gcm-3 and a thermal expansion coefficient of 9.10-6°C-1. The glass and the glass-ceramic showed an excellent chemical stability against leaching in acidic solution and in alkaline solution. In summary, both the glass and the glass-ceramic have good chemical and mechanical properties and can, therefore, be applied as construction materials.

Alexa, A.a, Tigau Alexandru Pimentel Branquinho Salgueiro Calmeiro Martins Fortunato Musat N. b P. a. "Morphological and optical characterization of transparent thin films obtained at low temperature using ZnO nanoparticles." Journal of Optoelectronics and Advanced Materials. 17 (2015): 1288-1295. AbstractWebsite

Transparent metal oxides thin films are a class of inorganic conductors and semiconductors with significant importance for use in portable electronics, displays, flexible electronics, multi-functional windows and solar cells. Due to the recent development of transparent and flexible electronics, there is a growing interest in depositing metal-oxide thin-film on plastic substrates that can offer flexibility, lighter weight, and potentially lead to cheaper manufacturing by allowing printing and rollto- roll processing. The plastic substrates, however, limit device processing to below 200oC. In this context, the deposition of high-performance semiconductor thin films from dispersions of pre-prepared oxide nanoparticles at temperatures below 200oC represents a potential key route. This paper reports on the preparation of ZnO transparent thin films using solutionprocessed nanoparticles (NPs) precipitated from zinc acetate alcoholic solution with potassium hydroxide. The nanoparticles size distribution, microstructure and crystallinity were measured by dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The thin films were deposited by spin-coating onto soda lima glass substrate, using a dispersion of 1wt% ZnO NPs. The morphology of the films annealed at 120 and 180oC, observed by atomic force microscopy and cross-section scanning electron microscopy, shows columnar grains with diameter ranging between 20 and 70 nm, depending on the conditions of depositions. Optical measurements indicated high transparency, between 85 and 94 %, in the visible range, a direct nature of band-to-band transitions and band gap values between 3,22 and 3,32 eV. The refractive index and extinction coefficient have been calculated from optical transmittance and reflectance spectra.

c Almeida, P.L.a, Godinho Cidade Nunes Marques Martins Fortunato Figueirinhas M. H. a M. "Composite systems for flexible display applications from cellulose derivatives." Synthetic Metals. 127 (2002): 111-114. AbstractWebsite

In this work, we study the electro-optical behaviour of cellulose/liquid crystal-based composite systems, in particular the influence of the flexible substrates and its conductive layers in the electro-optical behaviour of these kind of cells. Four cells were made using, respectively, two different substrates (a flexible polymer (poly(ethylene terephthalate) (PET)) and a soda lime glass) and two different conductive layers (indium tin oxide (ITO) and aluminium zinc oxide (AZO)). The conductive layer (AZO) was deposited in both, flexible and rigid substrates, for the same conditions, and the same substrates coated with ITO are commercially available. The cells were prepared from solid films of hydroxypropylcellulose (HPC) (30 μm thick) cross linked with 1,4-diisocyanatobutane (BDI) (7% w/w) and the nematic liquid crystal E7 (Merck, UK). The four different substrates were electrically and morphologically characterised. We have analysed all samples by light transmission and determined the maximum transmission, contrast and Von. We show a comparison of the results obtained for both flexible and rigid cells and discuss them in terms of the proposed working mechanism for these systems. © 2002 Elsevier Science B.V. All rights reserved.

deZeaBermudez Alves, R.D.a, Rodrigues Andrade Fernandes Pinto Pereira Pawlicka Martins Fortunato Silva L. C. a J. "GelatinnZn(CF3SO3)2 polymer electrolytes for electrochromic devices." Electroanalysis. 25 (2013): 1483-1490. AbstractWebsite

The present work is focused on gelatin-based electrolytes doped with a range of concentration of zinc triflate (Zn(CF3SO3)2). The transparent-thin-film samples have been represented by the notation GelatinnZn(CF3SO3)2, where n represents the zinc triflate salt concentration in the electrolyte membranes from 0.00 wt% to 10.93 wt% The samples have been characterized by conductivity measurements, thermal analysis, cyclic voltammetry, X-ray diffraction (XRD), polarized optical microscopy (POM) and scanning electron microscopy (SEM). The gelatin-based electrolytes were also tested as ionic conductors in electrochromic devices with the glass/ITO/WO3/gelatin-based electrolyte/CeO2-TiO2/ITO/glass configuration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Alves, E.a, Franco Barradas Munnik Monteiro Peres Wang Martins Fortunato N. a N. P. "Structural and optical properties of nitrogen doped ZnO films." Vacuum. 83 (2009): 1274-1278. AbstractWebsite

Zinc oxide is getting an enormous attention due to its potential applications in a variety of fields such as optoelectronics, spintronics and sensors. The renewed interest in this wide band gap oxide semiconductor relies on its direct high energy gap (Eg ∼ 3.437 eV at low temperatures) and large exciton binding energy. However to reach the stage of device production the difficulty to produce in a reproducible way p-type doping must be overcome. In this study we discuss the structural and optical properties of ZnO films doped with nitrogen, a potential p-type dopant. The films were deposited by magnetron sputtering using different conditions and substrates. The composition and structural properties of the films were studied combining X-ray diffraction (XRD), Rutherford backscattering (RBS), and heavy ion elastic recoil detection analysis (HI-ERDA). The results show an improvement of the quality of the films deposited on sapphire with increasing radio-frequency (RF) power with a preferentially growth along the c-axis. The ERDA analysis reveals the presence of H in the films and a homogeneous composition over the entire thickness. The photoluminescence of annealed samples evidences an improvement on the optical quality as identified by the well structured near band edge recombination. © 2009 Elsevier Ltd. All rights reserved.

Alves, R.D.a, Rodrigues Andrade Pawlicka Pereira Martins Fortunato Silva L. C. a J. "Study and characterization of a novel polymer electrolyte based on agar doped with magnesium triflate." Molecular Crystals and Liquid Crystals. 570 (2013): 1-11. AbstractWebsite

In the present work one host natural matrix - agar - has been doped with magnesium triflate (Mg(CF3SO3)2) with the goal of developing electrolytes for the fabrication of solid-state devices. The resulting samples have been represented by the notation Agar nMg(CF3SO3)2, where n represents the percentage of the magnesium triflate salt proportion in the electrolyte samples. The samples investigated, with n between 0.00% and 37.56%, have been obtained as transparent and thin films. The samples have been characterized by conductivity measurements, thermal analysis, cyclic voltammetry, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The agar-based electrolytes were also tested as ionic conductor in an electrochromic device with the following configuration: glass/indium tin oxide (ITO)/WO 3/agar-based electrolyte/CeO2-TiO2/ITO/glass. © 2013 Copyright Taylor and Francis Group, LLC.

b Amorín, H.a, Martins Kholkin Costa R. S. a A. "Structural and electrical characterization of ferroelectric SrBi 2Nb2O9 single crystals grown by high-temperature self-flux solution." Ferroelectrics. Vol. 320. 2005. 43-50. Abstract

High-quality SrBi2Nb2O9 (SBN) single crystals were grown from a melt using a high-temperature self-flux solution method and Bi2O3 added with B2O3 as a flux. A suitable thermal profile involving slow cooling rates allowed growing large and translucent SBN crystals exhibiting platelet morphology with typical size ∼5 × 5 mm2 and thickness approximately 400 μm. X-ray diffraction revealed a dominant (001)-orientation of the major face of the platelet crystals and edges oriented parallel to the [110] directions. The dielectric properties were evaluated along the ab-plane and in the c-axis direction. The ferro-paraelectric phase transition was observed at TC = 440°C with Curie-Weiss relationship above TC. The anisotropy of dielectric permittivity, i.e., the ratio between permittivity in the ab-plane and along c-axis was about 10 at TC-The obtained results are used to discuss the observed correlations between anisotropy, crystalline orientation, and electrical properties.

and Ao Liu, Guoxia Liu, Huihui Zhu Byoungchul Shin Elvira Fortunato Rodrigo Martins Fukai Shan. "Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors." Journal of Materials Chemistry C. 4 (2016): 4478-4484. AbstractWebsite

In this study, amorphous indium-tungsten oxide (IWO) semiconductor thin films were prepared by an eco-friendly spin-coating process using ethanol and water as solvents. The electrical properties of IWO thin-film transistors (TFTs), together with the structural and morphological characteristics of IWO thin films, were systematically investigated as functions of tungsten concentration and annealing temperature. The optimized IWO channel layer was then integrated on an aqueous aluminum oxide (AlOx) gate dielectric. It is observed that the solution-processed IWO/AlOx TFT presents high stability and improved characteristics, such as an on/off current ratio of 5 × 107, a field-effect mobility of 15.3 cm2 V-1 s-1, a small subthreshold slope of 68 mV dec-1, and a threshold voltage shift of 0.15 V under bias stress for 2 h. The IWO/AlOx TFT could be operated at a low voltage of 2 V, which was 15 times lower than that of conventional SiO2-based devices. The solution-processed IWO thin films synthesized in a green route would be promising candidates for large-area and high-performance low-cost devices. © The Royal Society of Chemistry 2016.

and Ao Liu, Guoxia Liu, Huihui Zhu Byoungchul Shin Elvira Fortunato Rodrigo Martins Fukai Shan. "High-mobility p-type NiOx thin-film transistors processed at low temperatures with Al2O3 high-k dielectric." Journal of Materials Chemistry C. 4 (2016): 9438-9444. AbstractWebsite

Although there are a few research studies on solution-processed p-channel oxide thin-film transistors (TFTs), the strict fabrication conditions and the poor electrical properties have limited their applications in low-power complementary metal oxide semiconductor (CMOS) electronics. Here, the application of the polyol reduction method for processing p-type CuxO and NiOx channel layers and their implementation in TFT devices are reported. The optimized CuxO and NiOx TFTs were achieved at low annealing temperatures (∼300 °C) and exhibited decent electrical properties. Encouraged by the inspiring results obtained on SiO2/Si substrates, the TFT performance was further optimized by device engineering, employing high-k AlOx as the gate dielectric. The fully solution-processed NiOx/AlOx TFT could be operated at a low voltage of 3.5 V and exhibits a high hole mobility of around 25 cm2 V-1 s-1. Our work demonstrates the ability to grow high-quality p-type oxide films and devices via the polyol reduction method over large area substrates while at the same time it provides guidelines for further p-type oxide material and device improvements. © The Royal Society of Chemistry 2016.

Araújo, A.a, Barros Mateus Gaspar Neves Vicente Filonovich Barquinha Fortunato Ferraria Botelho Do Rego Bicho Águas Martins R. a T. a. "Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells." Science and Technology of Advanced Materials. 14 (2013). AbstractWebsite

We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm -2 and a filling factor of 63%, that is, a 10% increase in the J SC and 20% increase in the efficiency compared to a standard solar cell. © 2013 National Institute for Materials Science.

Araújo, A., Mendes Mateus Vicente Nunes Calmeiro Fortunato Águas Martins M. J. T. "Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing." Journal of Physical Chemistry C. 120 (2016): 18235-18242. AbstractWebsite

Metal nanoparticles are of great interest for light trapping in photovoltaics. They are usually incorporated in the rear electrode of solar cells, providing strong light scattering at their surface plasmon resonances. In most cases, the nanoparticles are self-assembled by solid-state dewetting over a transparent conductive oxide (TCO) layer incorporated in the cell's rear electrode. Up to now, this process has been optimized mainly by tuning the thermal annealing parameters responsible for dewetting, or the thickness of the precursor metallic layer; but little attention has been paid to the influence of the underlying TCO layer properties on the morphology of the nanoparticles formed, which is the focus of the present article. This work investigates Ag nanoparticles structures produced on distinct surfaces by a simple, fast and highly reproducible method employing rapid thermal annealing. The results indicate that both the thermal conductivity and surface roughness of the TCO layer play a determinant role on the morphology of the nanostructures formed. This is of particular relevance, since we show in the study performed that the parasitic absorption of these Ag nanostructures is reduced, while the scattering is enhanced when the Ag nanostructures are formed on TCO layers with the highest conductivity and the lowest surface roughness (∼1 nm). These results unveil novel possibilities for the improvement of plasmonic nanostructures fabricated by thermal dewetting, via the careful adjustment of the physical properties of the underlying surface. © 2016 American Chemical Society.