Publications

Export 119 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Karlovich, Alexei Yu. "Hardy-Littlewood maximal operator on reflexive variable Lebesgue spaces over spaces of homogeneous type." Studia Mathematica. 254.2 (2020): 149-178.
G
Böttcher, Albrecht, Alexei Yu. Karlovich, and Bernd Silbermann. "Generalized Krein algebras and asymptotics of Toeplitz determinants." Methods of Functional Analysis and Topology. 13.2 (2007): 236-261. AbstractWebsite

We give a survey on generalized Krein algebras \(K_{p,q}^{\alpha,\beta}\) and their applications to Toeplitz determinants. Our methods originated in a paper by Mark Krein of 1966, where he showed that \(K_{2,2}^{1/2,1/2}\) is a Banach algebra. Subsequently, Widom proved the strong Szeg\H{o} limit theorem for block Toeplitz determinants with symbols in \((K_{2,2}^{1/2,1/2})_{N\times N}\) and later two of the authors studied symbols in the generalized Krein algebras \((K_{p,q}^{\alpha,\beta})_{N\times N}\), where \(\lambda:=1/p+1/q=\alpha+\beta\) and \(\lambda=1\). We here extend these results to \(0<\lambda<1\). The entire paper is based on fundamental work by Mark Krein, ranging from operator ideals through Toeplitz operators up to Wiener-Hopf factorization.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "The generalized Cauchy index of some semi-almost periodic functions." Boletín de la Sociedad Matemática Mexicana. 22.2 (2016): 473-485. AbstractWebsite

We compute the generalized Cauchy index of some semi-almost periodic functions, which are important
in the study of the Fredholm index of singular integral operators with shifts and slowly oscillating data.

F
Karlovich, Alexei Yu. "Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces." Journal of Integral Equations and Applications. 15.3 (2003): 263-320. AbstractWebsite

We prove necessary conditions for the Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces. These conditions are formulated in terms of indices of submultiplicative functions associated with local properties of the space, of the curve, and of the weight. As an example, we consider weighted Nakano spaces \(L^{p(\cdot)}_w\) (weighted Lebesgue spaces with variable exponent). Moreover, our necessary conditions become also sufficient for weighted Nakano spaces over nice curves whenever \(w\) is a Khvedelidze weight, and the variable exponent \(p(t)\) satisfies the estimate \(|p(\tau)-p(t)|\le A/(-\log|\tau-t|)\).

Karlovych, Oleksiy. "Fredholmness of pseudodifferential operators on rearrangement-invariant spaces." Pseudo-Differential Operators and Related Topics, Extended Abstracts PSORT 2024. Eds. Vishvesh Kumar, David Rottensteiner, and Michael Ruzhansky. Cham: Birkhäuser, 2025. 39-46.
Karlovich, Alexei Yu. "Fredholmness and index of simplest weighted singular integral operators with two slowly oscillating shifts." Banach Journal of Mathematical Analysis. 9.3 (2015): 24-42. AbstractWebsite

Let \(\alpha\) and \(\beta\) be orientation-preserving diffeomorphism (shifts) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\), where the derivatives \(\alpha'\) and \(\beta'\) may have discontinuities of slowly oscillating type at \(0\) and \(\infty\). For \(p\in(1,\infty)\), we consider the weighted shift operators \(U_\alpha\) and \(U_\beta\) given on the Lebesgue space \(L^p(\mathbb{R}_+)\) by \(U_\alpha f=(\alpha')^{1/p}(f\circ\alpha)\) and \(U_\beta f=(\beta')^{1/p}(f\circ\beta)\). For \(i,j\in\mathbb{Z}\) we study the simplest weighted singular integral operators with two shifts \(A_{ij}=U_\alpha^i P_\gamma^++U_\beta^j P_\gamma^-\) on \(L^p(\mathbb{R}_+)\), where \(P_\gamma^\pm=(I\pm S_\gamma)/2\) are operators associated to the weighted Cauchy singular integral operator \[ (S_\gamma f)(t)=\frac{1}{\pi i}\int_{\mathbb{R}_+} \left(\frac{t}{\tau}\right)^\gamma\frac{f(\tau)}{\tau-t}d\tau \] with \(\gamma\in\mathbb{C}\) satisfying \(0<1/p+\Re\gamma<1\). We prove that the operator \(A_{ij}\) is a Fredholm operator on \(L^p(\mathbb{R}_+)\) and has zero index if \[ 0<\frac{1}{p}+\Re\gamma+\frac{1}{2\pi}\inf_{t\in\mathbb{R}_+}(\omega_{ij}(t)\Im\gamma), \quad \frac{1}{p}+\Re\gamma+\frac{1}{2\pi}\sup_{t\in\mathbb{R}_+}(\omega_{ij}(t)\Im\gamma)<1, \] where \(\omega_{ij}(t)=\log[\alpha_i(\beta_{-j}(t))/t]\) and \(\alpha_i\), \(\beta_{-j}\) are iterations of \(\alpha\), \(\beta\). This statement extends an earlier result obtained by the author, Yuri Karlovich, and Amarino Lebre for \(\gamma=0\).

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Fredholmness and index of simplest singular integral operators with two slowly oscillating shifts." Operators and Matrices. 8.4 (2014): 935-955. AbstractWebsite

Let \(\alpha\) and \(\beta\) be orientation-preserving diffeomorphisms (shifts) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\), where the derivatives \(\alpha'\) and \(\beta'\) may have discontinuities of slowly oscillating type at \(0\) and \(\infty\). For \(p\in(1,\infty)\), we consider the weighted shift operators \(U_\alpha\) and \(U_\beta\) given on the Lebesgue space \(L^p(\mathbb{R}_+)\) by \(U_\alpha f=(\alpha')^{1/p}(f\circ\alpha)\) and \(U_\beta f= (\beta')^{1/p}(f\circ\beta)\). We apply the theory of Mellin pseudodifferential operators with symbols of limited smoothness to study the simplest singular integral operators with two shifts \(A_{ij}=U_\alpha^i P_++U_\beta^j P_-\) on the space \(L^p(\mathbb{R}_+)\), where \(P_\pm=(I\pm S)/2\) are operators associated to the Cauchy singular integral operator \(S\), and \(i,j\in\mathbb{Z}\). We prove that all \(A_{ij}\) are Fredholm operators on \(L^p(\mathbb{R}_+)\) and have zero indices.

Fernandes, Cláudio A., Alexei Yu. Karlovich, and Yuri I. Karlovich. "Fourier convolution operators with symbols equivalent to zero at infinity on Banach function spaces." Current Trends in Analysis, its Applications and Computation. Eds. P. Cerejeiras, M. Reissig, I. Sabadini, and J. Toft. Springer, 2022. 335-343.
Karlovich, Alexei Yu, Helena Mascarenhas, and Pedro A. Santos. "Finite section method for a Banach algebra of convolution type operators on Lp(R) with symbols generated by PC and SO." Integral Equations and Operator Theory. 67.4 (2010): 559-600. AbstractWebsite

We prove necessary and sufficient conditions for the applicability of the finite section method to an arbitrary operator in the Banach algebra generated by the operators of multiplication by piecewise continuous functions and the convolution operators with symbols in the algebra generated by piecewise continuous and slowly oscillating Fourier multipliers on \(L^p(\mathbb{R})\), \(1 < p < \infty\).

E
Karlovich, Alexei Yu., and Eugene Shargorodsky. "An example of a reflexive Lorentz Gamma space with trivial Boyd and Zippin indices." Czechoslovak Mathematical Journal. 71.4 (2021): 1199-1209.Website
Karlovych, Oleksiy, and Eugene Shargorodsky. "The essential norms of Toeplitz operators with symbols in $C+H^\infty$ on weighted Hardy spaces are independent of the weights." Integral Equations and Operator Theory. 97 (2025): article 4.Website
Karlovich, Alexei Yu., Helena Mascarenhas, and Pedro A. Santos. "Erratum to: Finite section method for a Banach algebra of convolution type operators on Lp(R) with symbols generated by PC and SO (vol 37, pg 559, 2010)." Integral Equations and Operator Theory. 69.3 (2011): 447-449. AbstractWebsite

We correct Theorem 3.2 and Corollary 3.3 from [KMS]. This correction ammounts to the observation that the proof of the main result in [KMS] contains a gap in Lemma~10.6 for \(p\ne 2\). The results of [KMS] are true for \(p=2\).

D
Karlovych, Oleksiy, and Eugene Shargorodsky. "Discrete Riesz transforms on rearrangement-invariant Banach sequence spaces and maximally noncompact operators." Pure and Applied Functional Analysis. 9.1 (2024): 195-210.Website
Karlovich, Alexei Yu. "Density of analytic polynomials in abstract Hardy spaces." Commentationes Mathematicae. 57.2 (2017): 131-141.Website
C
Karlovich, Alexei Yu. "Criteria for one-sided invertibility of a functional operator in rearrangement-invariant spaces of fundamental type." Mathematische Nachrichten. 229 (2001): 91-118. AbstractWebsite

Let \(\gamma\) be a simple open smooth curve and \(\alpha\) be an orientation-preserving diffeomorphism of \(\gamma\) onto itself which has only two fixed points. Criteria for one-sided invertibility of the functional operator
\[
A=aI-bW,
\]
where \(a\) and \(b\) are continuous functions, \(I\) is the identity operator, \(W\) is the shift operator: \((Wf)(t)=f[\alpha(t)]\), in a reflexive rearrangement-invariant space of fundamental type \(X(\gamma)\) with nontrivial Boyd indices, are obtained.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Criteria for n(d)-normality of weighted singular integral operators with shifts and slowly oscillating data." Proceedings of the London Mathematical Society. 116.4 (2018): 997-1027 .Website
Karlovich, Alexei Yu., and Ilya M. Spitkovsky. "Connectedness of spectra of Toeplitz operators on Hardy spaces with Muckenhoupt weights over Carleson curves." Integral Equations and Operator Theory. 65.1 (2009): 83-114. AbstractWebsite

Harold Widom proved in 1966 that the spectrum of a Toeplitz operator \(T(a)\) acting on the Hardy space \(H^p(\mathbb{T})\) over the unit circle \(\mathbb{T}\) is a connected subset of the complex plane for every bounded measurable symbol \(a\) and \(1 < p < \infty\). In 1972, Ronald Douglas established the connectedness of the essential spectrum of \(T(a)\) on \(H^2(\mathbb{T})\). We show that, as was suspected, these results remain valid in the setting of Hardy spaces \(H^p(\Gamma,w)\), \( 1 < p < \infty \), with general Muckenhoupt weights \(w\) over arbitrary Carleson curves \(\Gamma\).

Karlovich, Alexei Yu., and Yuri I. Karlovich. "Compactness of commutators arising in the Fredholm theory of singular integral operators with shifts." Factorization, Singular Operators and Related Problems. Eds. Stefan Samko, Amarino Lebre, and António Ferreira dos Santos. Dordrecht: Kluwer Academic Publishers, 2003. 111-129. Abstract

The paper is devoted to the compactness of the commutators \(aS_\Gamma - S_\Gamma aI\) and \(W_\alpha S_\Gamma - S_\Gamma W_\alpha\), where \(S_\Gamma\) is the Cauchy singular integral operator, \(a\) is a bounded measurable function, \(W_\alpha\) is the shift operator given by \(W_\alpha f = f\circ\alpha\), and \(\alpha\) is a bi-Lipschitz homeomorphism (shift). The cases of the unit circle and the unit interval are considered. We prove that these commutators are compact on rearrangement-invariant spaces with nontrivial Boyd indices if and only if the function a or, respectively, the derivative of the shift a has vanishing mean oscillation.

Karlovich, Alexei Yu., and Andrei K. Lerner. "Commutators of singular integrals on generalized Lp spaces with variable exponent." Publicacions Matematiques. 49.1 (2005): 111-125. AbstractWebsite

A classical theorem of Coifman, Rochberg, and Weiss on commutators of singular integrals is extended to the case of generalized Lp spaces with variable exponent.

Karlovich, Alexei Yu. "Commutators of convolution type operators on some Banach function spaces." Annals of Functional Analysis. 6.4 (2015): 191-205. AbstractWebsite

We study the boundedness of Fourier convolution operators \(W^0(b)\) and the compactness of commutators of \(W^0(b)\) with multiplication operators \(aI\) on some Banach function spaces \(X(\mathbb{R})\) for certain classes of piecewise quasicontinuous functions \(a\in PQC\) and piecewise slowly oscillating Fourier multipliers \(b\in PSO_{X,1}^\diamond\). We suppose that \(X(\mathbb{R})\) is a separable rearrangement-invariant space with nontrivial Boyd indices or a reflexive variable Lebesgue space, in which the Hardy-Littlewood maximal operator is bounded. Our results complement those of Isaac De La Cruz-Rodríguez, Yuri Karlovich, and Iván Loreto Hernández obtained for Lebesgue spaces with Muckenhoupt weights.

Karlovych, Oleksiy, and Eugene Shargorodsky. "The Coburn lemma and the Hartman-Wintner-Simonenko theorem for Toeplitz operators on abstract Hardy spaces." Integral Equations and Operator Theory. 95 (2023): 6.Website
Karlovich, Alexei Yu., and Ilya M. Spitkovsky. "The Cauchy singular integral operator on weighted variable Lebesgue spaces." Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Operator Theory: Advances and Applications, 236. Eds. Manuel Cepedello Boiso, Håkan Hedenmalm, Marinus A. Kaashoek, Alfonso Montes Rodríguez, and Sergei Treil. Basel: Birkhäuser, 2014. 275-291. Abstract

Let \(p:\mathbb{R}\to(1,\infty)\) be a globally log-Hölder continuous variable exponent and \(w:\mathbb{R}\to[0,\infty]\) be a weight. We prove that the Cauchy singular integral operator \(S\) is bounded on the weighted variable Lebesgue space \(L^{p(\cdot)}(\mathbb{R},w)=\{f:fw\in L^{p(\cdot)}(\mathbb{R})\}\) if and only if the weight \(w\) satisfies $$ \sup_{-\infty < a < b < \infty} \frac{1}{b-a} \|w\chi_{(a,b)}\|_{p(\cdot)} \|w^{-1}\chi_{(a,b)}\|_{p'(\cdot)}<\infty \quad (1/p(x)+1/p'(x)=1). $$

Fernandes, Cláudio A., Alexei Yu. Karlovich, and Yuri I. Karlovich. "Calkin images of Fourier convolution operators with slowly oscillating symbols." Operator Theory, Functional Analysis and Applications. Operator Theory: Advances and Applications, vol 282. Basel: Birkhäuser Basel, 2021. 193-218.
B
Karlovych, Oleksiy, and Sandra Mary Theampi. "The Brown-Halmos theorem for discrete Wiener-Hopf operators." Advances in Operator Theory. 9 (2024): 69.Website