Publications

Export 33 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Fernandes, Vítor H., and Paulo G. Santos. "Endomorphisms of semigroups of order-preserving partial transformations." Semigroup Forum (10.1007/s00233-018-9948-z). 99 (2019): 333-344. AbstractWebsite

In this paper we characterize the monoids of endomorphisms of the semigroups PO_n and POI_n of all order-preserving partial transformations and of all order-preserving partial permutations, respectively, of a finite n-chain.

Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Presentations for some monoids of injective partial transformations on a finite chain." Southeast Asian Bull. Math.. 28 (2004): 903-918.
Fernandes, Vítor H., and Teresa M. Quinteiro. "Presentations for monoids of finite partial isometries." Semigroup Forum (DOI: 10.1007/s00233-015-9759-4). 93.1 (2016): 97-110. AbstractWebsite

In this paper we give presentations for the monoid $\DP_n$ of all partial isometries on $\{1,\ldots,n\}$ and for its submonoid $\ODP_n$ of all order-preserving partial isometries.

Fernandes, Vítor H. "The idempotent-separating degree of a block-group." Semigroup Forum. 76 (2008): 579-583.Website
Fernandes, Vítor H., and Teresa M. Quinteiro. "On the ranks of certain monoids of transformations that preserve a uniform partition." Communications in Algebra. 42.2 (2014): 615-636.
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Congruences on monoids of transformations preserving the orientation of a finite chain." J. Algebra. 321 (2009): 743-757.Website
Fernandes, Vítor H., and Teresa M. Quinteiro. "On the monoids of transformations that preserve the order and a uniform partition." Communications in Algebra. 39.8 (2011): 2798-2815.
Fernandes, Vitor H. "Semigroups of order preserving mappings on a finite chain: a new class of divisors." Semigroup Forum. 54 (1997): 230-236.Website
Fernandes, Vítor H., and Tânia Paulista. "On the Rank of Monoids of Endomorphisms of a Finite Directed Path." Asian-European Journal of Mathematics (DOI 10.1142/S1793557123500699; Online 28 Oct 2022). 16.04 (2023): 2350069 (13 pages). AbstractWebsite

In this paper we consider endomorphisms of a finite directed path from monoid generators perspective. Our main aim is to determine the rank of the monoid wEndP_n of all weak endomorphisms of a directed path with n vertices, which is a submonoid of the widely studied monoid O_n of all order-preserving transformations of a n-chain. Also, we describe the regular elements of wEndP_n and calculate its size and number of idempotents.

Fernandes, V. H. "The monoid of all injective order preserving partial transformations on a finite chain." Semigroup Forum. 62 (2001): 178-204.
Fernandes, Vítor H., M. M. Jesus, and B. Singha. "On orientation-preserving transformations of a chain." Communications in Algebra (DOI 10.1080/00927872.2020.1870996). 49.6 (2021): 2300-2325. AbstractWebsite

In this paper we introduce the notion of an orientation-preserving transformation on an arbitrary chain, as
a natural extension for infinite chains of the well known concept for finite chains introduced in 1998 by McAlister and, independently, in 1999 by Catarino and Higgins.
We consider the monoid POP(X) of all orientation-preserving partial transformations on a finite or infinite chain X and its submonoids OP(X) and POPI(X) of all orientation-preserving full transformations and of all orientation-preserving partial permutations on X, respectively.
The monoid PO(X) of all order-preserving partial transformations on X and its injective counterpart POI(X) are also considered.
We study the regularity and give descriptions of the Green's relations of the monoids POP(X), PO(X), OP(X), POPI(X) and POI(X).

Fernandes, Vítor H. "Presentations for some monoids of partial transformations on a finite chain: a survey." Semigroups, algorithms, automata and languages (Coimbra, 2001). World Sci. Publ., River Edge, NJ, 2002. 363-378.
Fernandes, Vítor H., and Teresa M. Quinteiro. "A note on bilateral semidirect product decompositions of some monoids of order-preserving partial permutations." Bull. Korean Math. Soc.. 53.2 (2016): 495-506. AbstractWebsite

In this note we consider the monoid $PODI_n$ of all monotone partial permutations on $\{1,\ldots,n\}$ and its submonoids $DP_n$, $POI_n$ and $ODP_n$ of all partial isometries, of all order-preserving partial permutations and of all order-preserving partial isometries, respectively. We prove that both the monoids $POI_n$ and $ODP_n$ are quotients of bilateral semidirect products of two of their remarkable submonoids, namely of extensive and of co-extensive transformations. Moreover, we show that $PODI_n$ is a quotient of a semidirect product of $POI_n$ and the group $\mathcal{C}_2$ of order two and, analogously, $DP_n$ is a quotient of a semidirect product of $ODP_n$ and $\mathcal{C}_2$.

Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Congruences on monoids of order-preserving or order-reversing transformations on a finite chain." Glasg. Math. J.. 47 (2005): 413-424.Website
Fernandes, Vítor H., Preeyanuch Honyam, Teresa M. Quinteiro, and Boorapa Singha. "On semigroups of endomorphisms of a chain with restricted range." Semigroup Forum (DOI: 10.1007/s00233-013-9548-x). 89.1 (2014): 77-104. AbstractWebsite

Let $X$ be a finite or infinite chain and let $\O(X)$ be the monoid of all endomorphisms of $X$.
In this paper, we describe the largest regular subsemigroup of $\O(X)$ and Green's relations on $\O(X)$.
In fact, more generally, if $Y$ is a nonempty subset of $X$ and $\O(X,Y)$ is the subsemigroup of $\O(X)$ of all elements with range contained in $Y$,
we characterize the largest regular subsemigroup of $\O(X,Y)$ and Green's relations on $\O(X,Y)$.
Moreover, for finite chains, we determine when two semigroups of the type $\O(X,Y)$ are isomorphic and calculate their ranks.

Fernandes, Vítor H. "On divisors of pseudovarieties generated by some classes of full transformation semigroups." Algebra Colloq.. 15 (2008): 581-588.
Fernandes, Vítor H., and Teresa M. Quinteiro. "The cardinal of various monoids of transformations that preserve a uniform partition." Bulletin of the Malaysian Mathematical Sciences Society. 35.4 (2012): 885-896.
Fernandes, Vítor H., and M. V. Volkov. "On divisors of semigroups of order-preserving mappings of a finite chain." Semigroup Forum. 81 (2010): 551-554.Website
Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "The cardinal and the idempotent number of various monoids of transformations on a finite chain." Bulletin of the Malaysian Mathematical Sciences Society. 34.2 (2011): 79-85. Abstract

Summary: We consider various classes of monoids of transformations on a finite chain, in particular of transformations that preserve or reverse either the order or the orientation. Being finite monoids we are naturally interested in computing both their cardinals and their idempotent numbers. Fibonacci and Lucas numbers play an essential role in the last computations.

Fernandes, Vítor H. "Oriented transformations on a finite chain: another description." Commun. Korean Math. Soc. (In Press). Abstract

Following the new description of an oriented full transformation on a finite chain given recently by Higgins and Vernitsk,
in this short note we present a refinement of this description which is extendable to partial transformations and to injective partial transformations.

Fernandes, Vítor H. "The Vagner-Preston representation of a block-group." Southeast Asian Bull. Math.. 45.6 (2021): 805-812. AbstractWebsite

In this short note we construct an extension of the Vagner-Preston representation for block-groups and show that its kernel is the largest congruence that separates regular elements.

Fernandes, Vítor H., J. Koppitz, and T. Musunthia. "The rank of the semigroup of all order-preserving transformations on a finite fence." Bulletin of the Malaysian Mathematical Sciences Society (DOI: 10.1007/s40840-017-0598-1). 42.5 (2019): 2191-2211. AbstractWebsite

A zig-zag (or fence) order is a special partial order on a (finite) set. In this paper, we consider the semigroup $TF_{n}$ of all
order-preserving transformations on an $n$-element zig-zag ordered set. We determine the rank of $TF_{n}$ and provide a minimal generating set for $TF_{n}$. Moreover, a formula for the number of idempotents in $TF_{n}$ is given.

Fernandes, Vítor H., Gracinda M. S. Gomes, and Manuel M. Jesus. "Presentations for some monoids of partial transformations on a finite chain." Comm. Algebra. 33 (2005): 587-604.Website