Given graphs G and H, and a coloring of the edges of G with k colors, a monochromatic H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a monochromatic graph isomorphic to H. Let f_{k}(n,H) be the smallest number t such that any k-edge-colored graph G of order n, admits a monochromatic H-decomposition with at most t parts. Here we study the function f_{k}(n,K_r) for k ≥2 and r≥ 3.