Botelho, M. C., and H. Rocha Conceptualizações do conhecimento do professor para a integração da tecnologia no ensino da matemática. XVI Congresso Internacional Galego-Portugués de Psicopedagogia. Braga, Portugal, 2021.
AbstractThe potential of technology for teaching and learning mathematics has been widely recognized. However, research has shown that the integration of technology into teaching practice has proved to be difficult, with teachers' knowledge and professional development being identified as a determinant factor. Although there tends to be a focus on the teacher's knowledge of technology, the literature suggests that attention needs to be given to how to integrate technology into teaching practice, thereby involving other types of knowledge. This awareness has led several authors, inspired by Shulman's work, to develop models or conceptualizations of the knowledge required for effective integration of technology.
This study is based on a literature review of the research conducted on the models TPACK - Technological Pedagogical and Content Knowledge, KTMT - Knowledge for Teaching Mathematics with Technology, and PTK/MPTK - Mathematical Pedagogical Technology Knowledge and aims to carry out an analysis of the similarities and differences between the models considered. The main conclusions reached suggest the existence of a common basis for the models considered, but also point to several differences between them, with some highlighting the role of technology and its impact on the teaching and learning process, while others aim to integrate into the model elements based on research on technology or theories related to technology integration, such as instrumental genesis.
Rocha, H., and M. Botelho Teachers’ knowledge for teaching Mathematics with technology: an analysis of different frameworks. INTED - 15th annual International Technology, Education and Development Conference. IATED, 2021.
AbstractTeacher education is central to promote the development of the professional knowledge of teachers, and
to help them achieve an appropriate integration of digital technologies, an issue that has proved to be a
difficult one. Several authors refer difficulties in the integration of the technology, emphasizing the central
role played by the teachers’ knowledge in classroom use. In this paper we discuss three models (TPACK
– Technological Pedagogical and Content Knowledge, KTMT – Knowledge for Teaching Mathematics with
Technology, PTK / MPTK - Mathematical Pedagogical Technology Knowledge), intending to identify the
main contributions of each model to a deeper understanding of how to promote the teachers’ integration
of technology in the teaching of Mathematics. The study is based on a literature review and on an analysis
of the similarities and differences among the models and its use. On this analysis we identify common
influences among the models as well as influences from other research areas. The main conclusions
achieved point to a common base to all the models considered, but also to several differences among
them, being that some of the models emphasize the role of technology and its impact on Mathematics
learning, but others go further, intending to integrate in the model elements based on the research on
technology or even other theories such as the one on instrumental genesis.
Azevedo, A., J. Firmo, J. Correia, C. Chastre, H. Biscaia, and N. Franco. "
Fire behaviour of rc slab strips strengthened with advanced cfrp strengthening systems."
fib Symposium. Vol. 2021-June. 2021. 1306-1315.
AbstractCarbon fibre reinforced polymer (CFRP) composite systems are widely used to strengthen reinforced concrete (RC) structures through bonding strips/sheets on the concrete surface – externally bonded reinforcement (EBR) technique, or through strips/rods bonded inside slits in the concrete cover – near-surface mounted (NSM) technique. Although both techniques provide high strength increases, it is usually not possible to use the CFRPs’ full strength due to premature debonding, especially with EBR. This limitation can be overcome when using CREatE (continuous reinforcement embedded at ends) technique (developed by the last three authors), which consists of (i) bonding the central part of the CFRP strip (as in EBR), or the CFRP rod (as in NSM), and (ii) anchoring both ends of the strip/rod inside the concrete section, after a transition curve, enhancing its anchorage capacity. However, all these techniques are susceptible to fire, due to the polymeric nature of CFRP materials and epoxy adhesives. This paper presents the results of an experimental study regarding the fire behaviour of RC slab strips strengthened with EBR, NSM and CREatE techniques, in which the influence of applying different fire protection systems was investigated. The specimens were strengthened with those systems and simultaneously subjected to a service load and the ISO 834 fire curve. The following main results were obtained: (i) without fire protection, the CREatE technique presented the highest fire resistance due to the better anchorage of the CFRP; (ii) when protected, the NSM technique presented higher fire resistance compared to EBR and CREatE techniques; and (iii) “critical” temperatures were proposed for each technique, 1.0Tg, 2.5Tg, and 3.0Tg for EBR, NSM and CREatE techniques, respectively. © Fédération Internationale du Béton (fib) – International Federation for Structural Concrete.