López-Rojas, V., Clemmensen L. B., Milàn J., Wings O., Klein N., & Mateus O. (2023).  A new phytosaur species (Archosauriformes) from the Upper Triassic of Jameson Land, central East Greenland. Journal of Vertebrate PaleontologyJournal of Vertebrate Paleontology. e2181086., 2023: Taylor & Francis Abstracta_new_phytosaur_species_archosauriformes_from_the_upper_triassic_of_jameson_land_central_east_greenland.pdfWebsite

ABSTRACTHerein we describe phytosaurs from thin fluvial overbank sandstones of the Upper Triassic Malmros Klint Formation of the Fleming Fjord Group (central East Greenland). The new sample includes more than 150 disarticulated bones and teeth from small to large specimens belonging to at least four individuals. The fossils mostly consist of teeth and postcranial elements and permit the recognition of a new species of Mystriosuchus, M. alleroq, diagnosed by an L-shaped quadratojugal whose anterior suture trends anterodorsally and a tripartite degree of heterodonty. Humeral diaphyseal histology of one specimen reveals a fairly compact cortex that surrounds a cancellous medullary region followed by a remodeling zone containing scattered secondary osteons. Primary bone tissue is parallel-fibred with a moderate to low vascular density. The cortex is cyclically interrupted by distinct growth marks indicating a seasonal environment. A change in growth rate from moderate to low is documented within the outer cortex, indicating that at least this individual was close to somatic maturity. Mystriosuchus has formerly been known as an exclusively European taxon. The new findings support the European faunal influence in East Greenland during the Late Triassic inferred from other taxa such as temnospondyls and archosaurs. The mid-late Norian age of European Mystriosuchus suggests an additional age constraint for the vertebrate-bearing portion of the Malmros Klint Formation.

Jésus, V. J. P., Mateus O., Milàn J., & Clemmensen L. B. (2022).  First occurrence of a frog-like batrachian (Amphibia) in the Late Triassic Fleming Fjord Group, central East Greenland. Bulletin of the Geological Society of Denmark. 70, 117–130. Abstractbull70-117-130.pdfWebsite


López-Rojas, V., Mateus O., Milàn J., Wings O., Klein N., & Clemmensen L. B. (2021).  A new phytosaur from the Late Triassic of Jameson Land, Greenland. 3rd Palaeontological Virtual Congress. 207.: ISBN 978-84-09-36657-6 Abstractlopez_rojas_2021_pvc3_greenland.pdf


Milàn, J., Mateus O., Mau M., Rudra A., Sanei H., & Clemmensen L. B. (2021).  A possible phytosaurian (Archosauria, Pseudosuchia) coprolite from the Late Triassic Fleming Fjord Group of Jameson Land, central East Greenland. Bulletin of the Geological Society of Denmark. 69, 71-80. Abstractmilan_et_al_2021_coprolites_greenland_bull69-71-80.pdfWebsite

A large, well-preserved vertebrate coprolite was found in a lacustrine sediment in the Malmros Klint Formation of the Late Triassic Fleming Fjord Group in the Jameson Land Basin, central East Greenland. The size and internal and external morphology of the coprolite is consistent with that of crocodilian coprolites and one end of the coprolite exhibits evidence of post-egestion trampling. As the associated vertebrate fauna of the Fleming Fjord Group contains abundant remains of pseudosuchian phytosaurs, the coprolite is interpreted as being from a large phytosaur.

Clemmensen, L. B., Kent D. V., Mau M., Mateus O., & Milàn J. (2020).  Triassic lithostratigraphy of the Jameson Land basin (central East Greenland), with emphasis on the new Fleming Fjord Group. Bulletin of the Geological Society of Denmark. 68, 95–132. Abstractclemmensen_et_al_2020_triassic_lithostratigraphy_of_the_jameson_land_basin.pdfWebsite

The lithostratigraphy of the Triassic deposits of the Jameson Land Basin in central East Greenland is revised. The new Scoresby Land Supergroup is now composed of the Wordie Creek, Pingo Dal, Gipsdalen and Fleming Fjord Groups. This paper only deals with the lithostratigraphy of the late Early-Late Triassic continental deposits of the latter three groups with emphasis on the vertebratebearing Fleming Fjord Group. The new Pingo Dal Group consists of three new formations, the Rødstaken, Paradigmabjerg and Klitdal Formations (all elevated from members), the new Gipsdalen Group consists of three new formations, the Kolledalen, Solfaldsdal (with the new Gråklint Member) and Kap Seaforth Formations (all elevated from members), and the new Fleming Fjord Group is subdivided into three new formations, the Edderfugledal, Malmros Klint and Ørsted Dal Formations (all elevated from members). The Edderfugledal Formation contains two cyclic bedded, lacustrine members, a lowermost Sporfjeld Member (elevated from beds), and an uppermost Pingel Dal Member (elevated from beds). The lacustrine red beds of the Malmros Klint Formation are not subdivided. The lacustrine and fluvial Ørsted Dal Formation contains three new members. In the eastern and central part of the basin, the formation is initiated by cyclic bedded, red lacustrine mudstones of the Carlsberg Fjord Member (elevated from beds), while in the northwestern part of the basin the lowermost part of the formation is composed of grey fluvial conglomerates and sandstones with subordinate red mudstones of the Bjergkronerne Member (elevated from beds). The uppermost part of the formations in most of the basin is composed of cyclic bedded, variegated lacustrine mudstones and grey to yellowish marlstones of the Tait Bjerg Member (elevated from beds). The sediments in the Fleming Fjord Group contain remains of a rich and diverse vertebrate fauna including dinosaurs, amphibians, turtles, aeotosaurs, pterosaurs, phytosaurs and mammaliaforms. Most vertebrate bones have been found in uppermost Malmros Klint Formation, and in the Carlsberg Fjord and Tait Bjerg Members. The Norian–early Rhaetian, lacustrine Fleming Fjord Group was deposited at about 41° N on the northern part of the supercontinent Pangaea. Lacustrine sedimentation was controlled by seasonal as well as longer-term (orbital) variation in precipitation. Precipitation was probably brought to the basin by southwesterly winds. The lacustrine sediments of the uppermost Fleming Fjord Group show deposition during increasingly humid conditions changing the lake environment from an ephemeral lake-steppe area to a perennial lake. This evolution of lake environment suggests a change from a winter-wet temperate climate to one with precipitation throughout the year.

Agnolin, F. L., Mateus O., Milàn J., Marzola M., Wings O., Adolfssen J. S., & Clemmensen L. B. (2018).  Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland. Journal of Vertebrate PaleontologyJournal of Vertebrate Paleontology. e1439834., 2018: Taylor & Francis Abstractagnolin_et_al_2018_ceratodus_tunuensis_greenland.pdfWebsite

ABSTRACTThe fossil record of post-Paleozoic lungfishes in Greenland is currently restricted to a few brief reports of isolated and undetermined tooth plates coming from the uppermost Fleming Fjord Formation (late Norian) in Jameson Land, central East Greenland. Here, we describe Ceratodus tunuensis, sp. nov., a new dipnoan from a thin bed of calcareous lake mudstone from the ?rsted Dal Member of the Fleming Fjord Formation. The Ceratodus fossil record indicates that during the Late Triassic, this genus was restricted to the middle latitudes of the Northern Hemisphere. This record matches previous paleobiogeographical analyses and indicates that terrestrial biota during the Late Triassic was strongly influenced by paleolatitude.Citation for this article: Agnolin, F. L., O. Mateus, J. Milàn, M. Marzola, O. Wings, J. Schulz Adolfssen, and L. B. Clemmensen. 2018. Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland. Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2018.1439834.

Marzola, M., Mateus O., Milàn J., & Clemmensen L. B. (2018).  A review of Palaeozoic and Mesozoic tetrapods from Greenland. Bulletin of the Geological Society of Denmark. 66, 21–46. Abstractmarzola_et_al_2018_-_review_of_greenlandic_tetrapods.pdf

This article presents a synthesis of Palaeozoic and Mesozoic fossil tetrapods from Greenland, including an updated review of the holotypes and a new photographic record of the main specimens. All fossil tetrapods found are from East Greenland, with at least 30 different known taxa: five stem tetrapods (Acanthostega gunnari, Ichthyostega eigili, I. stensioi, I. watsoni, and Ymeria denticulata) from the Late Devonian of the Aina Dal and Britta Dal Formations; four temnospondyl amphibians (Aquiloniferus kochi, Selenocara groenlandica, Stoschiosaurus nielseni, and Tupilakosaurus heilmani) from the Early Triassic of the Wordie Creek Group; two temnospondyls (Cyclotosaurus naraserluki and Gerrothorax cf. pulcherrimus), one testudinatan (cf. Proganochelys), two stagonolepids (Aetosaurus ferratus and Paratypothorax andressorum), the eudimorphodontid Arcticodactylus, undetermined archosaurs (phytosaurs and both sauropodomorph and theropod dinosaurs), the cynodont Mitredon cromptoni, and three mammals (Haramiyavia clemmenseni, Kuehneotherium, and cf. ?Brachyzostrodon), from the Late Triassic of the Fleming
Fjord Formation; one plesiosaur from the Early Jurassic of the Kap Stewart Formation; one plesiosaur and one ichthyosaur from the Late Jurassic of the Kap Leslie Formation, plus a previously unreported Late Jurassic plesiosaur from Kronprins Christian Land. Moreover, fossil tetrapod trackways are known from the Late Carboniferous (morphotype Limnopus) of the Mesters Vig Formation and at least four different morphologies (such as the crocodylomorph Brachychirotherium, the auropodomorph Eosauropus and Evazoum, and the theropodian Grallator) associated to archosaurian trackmakers are known from the Late Triassic of the Fleming Fjord Formation. The presence of rich fossiliferous tetrapod sites in East Greenland is linked to the presence of well-exposed continental and shallow marine deposits with most finds in terrestrial deposits from the Late Devonian and the Late Triassic.

Marzola, M., Mateus O., Milàn J., & Clemmensen L. B. (2017).  Synrift sedimentary deposition and vertebrate fossil abundance: the tetrapod record from Greenland. Journal of Vertebrate Paleontology, Program and Abstracts. 2017, 159-160. Abstractmarzola_et_al_2017_svp_abstract_greenland.pdf


Lallensack, J. N., Klein H., Milàn J., Wings O., Mateus O., & Clemmensen L. B. (2017).  Sauropodomorph dinosaur trackways from the Fleming Fjord Formation of East Greenland: Evidence for Late Triassic sauropods. Acta Palaeontologica Polonica. 62(4), 833-843. Abstractlallensack_et_al_2017_-_sauropodomorph_tracks_greenland.pdf

The Late Triassic (Norian–early Rhaetian) Fleming Fjord Formation of central East Greenland preserves a diverse fossil fauna, including both body and trace fossils. Trackways of large quadrupedal archosaurs, although already reported in 1994 and mentioned in subsequent publications, are here described and figured in detail for the first time, based on photogrammetric data collected during fieldwork in 2012. Two trackways can be referred to Eosauropus, while a third, bipedal trackway may be referred to Evazoum, both of which have been considered to represent sauropodomorph dinosaur tracks. Both the Evazoum and the Eosauropus trackways are distinctly larger than other trackways referred to the respective ichnogenera. The trackmaker of the best preserved Eosauropus trackway is constrained using a synapomorphy-based approach. The quadrupedal posture, the entaxonic pes structure, and five weight-bearing digits indicate a derived sauropodiform trackmaker. Other features exhibited by the tracks, including the semi-digitigrade pes and the laterally deflected unguals, are commonly considered synapomorphies of more exclusive clades within Sauropoda. The present trackway documents an early acquisition of a eusauropod-like pes anatomy while retaining a well-developed claw on pedal digit IV, which is reduced in eusauropods. Although unequivocal evidence for sauropod dinosaurs is no older than the Early Jurassic, the present trackway provides evidence for a possible Triassic origin of the group.

Marzola, M., Mateus O., Milàn J., & Clemmensen L. B. (2017).  European affinities of the Late Triassic biota from Greenland are related to paleolatitude. 15th Annual Meeting of the European Association of Vertebrate Palaeontologists. 91, 61.: Zitteliana Abstract09._eavp_2017_-_marzola_et_al._2017._european_affinities_of_the_late_triassic_biota_from_greenland_are_related_to_paleolatitude.pdf