Publications

Export 32 results:
Sort by: Author Title Type [ Year  (Asc)]
2012
Lapa, N., R. Barbosa, and B. Mendes. "Intrinsic properties of new materials for civil engineering works based on the reuse of MSWI bottom ashes: chemical and ecotoxicological assessment." Urban Mining: A global cycle approach to resource recovery from solid waste. Eds. R. Cossu, V. Salieri, and V. Bisinella. Padova: CISA Publisher, 2012. 298-307.
Bernardo, M., N. Lapa, M. Gonçalves, B. Mendes, F. Pinto, I. Fonseca, and H. Lopes. "Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures." Journal of Hazardous Materials. 219-220 (2012): 196-202. AbstractWebsite

The present work aims to perform a multistep upgrading of chars obtained in the co-pyrolysis of PE, PP and PS plastic wastes, pine biomass and used tires. The quality of the upgraded chars was evaluated by measuring some of their physico-chemical properties in order to assess their valorisation as adsorbents’ precursors. The crude chars were submitted to a sequential solvent extraction with organic solvents of increasing polarity (hexane, mixture 1:1 v/v hexane:acetone and acetone) followed by an acidic demineralization procedure with 1 M HCl solution. The results obtained showed that the upgrading treatment allow the recovery of 63–81% of the pyrolysis oils trapped in the crude chars and a reduction in the char's ash content in the range of 64–86%. The textural and adsorption properties of the upgraded chars were evaluated and the results indicate that the chars are mainly mesoporous and macroporous materials, with adsorption capacities in the range of 3.59–22.2 mg/g for the methylene blue dye. The upgrading treatment allowed to obtain carbonaceous materials with quality to be reused as adsorbents or as precursors for activated carbon.

Bernardo, M., N. Lapa, M. Gonçalves, B. Mendes, and F. Pinto. "Study of the organic extraction and acid leaching of chars obtained in the pyrolysis of plastics, tire rubber and forestry biomass wastes." Procedia Engineering. 42 (2012): 1909-1916. AbstractWebsite

The present work aims to perform a characterization of chars obtained in the co-pyrolysis of waste mixtures composed by plastics, tires and pine biomass, to provide knowledge about the composition, leaching behavior and risk assessment of these materials in order to define strategies for their possible valorization or safe disposal. The chars were submitted to sequential solvent extractions with organic solvents of increasing polarity that allow the recovery of significant amounts of the pyrolysis oils trapped in the crude chars improving the yield of the pyrolysis liquids. An acidic demineralization procedure was successfully applied to the chars and high efficiency removals of the majority of the heavy metals were achieved. The demineralization study also demonstrated that hazardous heavy metals such as chromium, nickel and cadmium are significantly immobilized in the char matrix, and other heavy metals of concern such as zinc and lead will not represent a leaching problem if acidic conditions were not used. The obtained chars present sufficient quality and characteristics to be used as fuel or alternatively, to be used as adsorbents or precursors of activated carbon.

Barbosa, Rui, Diogo Dias, Nuno Lapa, and Benilde Mendes. "Using biomass ashes in concretes exposed to salted water and freshwater: mechanical and chemical properties." Advanced Materials Research. 587 (2012): 16-20. AbstractWebsite

The main aim of this work was to assess the possibility of using biomass ashes as substitutes for cement and natural aggregates in concretes without compromising their mechanical and chemical properties. Thirteen concrete formulations were prepared with different percentages of bottom and fly ashes produced at a forest biomass power plant. These formulations were submitted to mechanical compressive strength assays, after 28, 60 and 90 days of maturation. The reference formulation F1 that was produced without biomass ashes and one formulation incorporating fly and bottom ashes, F4, were selected for further characterization. After 90 days of maturation, the selected formulations were submitted to the leaching test described in the European Standard EN12457-2 (L/S ratio of 10 L/kg, in a batch extraction cycle of 24h) by using two different leaching agents: a synthetic marine medium (ASPM medium) and a synthetic freshwater medium (ISO 6341 medium). The eluates produced were submitted to chemical characterization which comprised a set of metals (As, Sb, Se, Cu, Zn, Ba, Hg, Cd, Mo, Pb, Ni, Cr, Cr VI, Al, Fe, Mg, Na, K and Ca), pH, SO42-, F-, dissolved organic carbon, chlorides, phenolic compounds and total dissolved solids. The substitution of 10% cement by fly ashes has not promoted the reduction of the compressive strength of concrete. The new formulation F4 has presented emission levels of chemical species similar or even lower to those observed for the reference formulation F1.

2013
Santos, Susana, Nuno Lapa, Andreia Alves, João Morais, and Benilde Mendes. "Analytical methods and validation for determining trace elements in red wines." Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes. 48.5 (2013): 364-375. AbstractWebsite

The objective of this work is to quantify As, Hg, Cd, Ni and Pb in Portuguese red wines. First, the methods for the quantification of trace elements in red wines were validated. Several pre-treatments were compared, namely a pre-digestion process with HNO3, a pre-oxidation step with H2O2, and a spiking step of wine samples with a known concentration of the trace elements analyzed. Except for As, it was determined that the quantification of the trace elements does not require a pre-digestion process with HNO3. For all of the trace elements analyzed, a pre-oxidation step with H2O2 may enable an accurate quantification. The techniques chosen for the quantification of trace elements were hydride generation atomic absorption spectrometry (HGAAS) for As and Hg, electrothermal atomic absorption spectrometry (ETAAS) for Cd, and flame atomic absorption spectrometry (FAAS) for Ni and Pb. In the second stage of this work, 25 Portuguese red wines spanning all of the red wine-producing regions were analyzed for all of the five trace elements referred to above. Only Cd and Pb have shown concentrations above the limit values defined by the “Organization Internationale de la Vigne et du Vin.” The Target Hazard Quotient (THQ) equation was used to determine in which wine-producing regions that wine consumption can be a problem for public health in terms of the concentrations of the five trace elements analyzed. THQ values have indicated that for the universe of the 25 red wines analyzed no region produces wines that can pose problems for public health, when the Portuguese red wine standard consumption is considered.

Barbosa, Rui, Diogo Dias, Nuno Lapa, Helena Lopes, and Benilde Mendes. "Chemical and ecotoxicological properties of size fractionated biomass ashes." Fuel Processing Technology. 109 (2013): 124-132. AbstractWebsite

The main aim of this work was to study the chemical and ecotoxicological properties of ashes produced in a biomass boiler of a pulp and paper industry and evaluate possible differences depending on the particle size of bottom and fly ashes. This industry produces electricity by burning eucalyptus and pine bark in a bubbling fluidized bed combustor. Bottom and fly ashes and their size fractions, obtained by sieving, were analysed for a set of metals and leaching behaviour. The eluates were also submitted to ecotoxicological characterization, using five indicators. The highest concentrations of metals and metalloids were found in the lower particle size fractions of bottom and fly ashes. However, generally, it could not be observed any specific releasing pattern of metals depending on the particle size, except for fly ashes in which the releasing rate of some earth and alkali-earth metals seemed to increase for lower particle size fractions. No specific pattern of the ecotoxicity levels could be associated to the different particle size fractions of ashes. The fractions of bottom ashes with 4,000–10,000 μm and > 10,000 μm have presented the lowest ecotoxicity levels. All the samples were classified as ecotoxic, except the fraction of bottom ashes > 10,000 μm.

Santos, Susana, Débora Azeitona, Nuno Lapa, João Morais, Helena Lopes, and Benilde Mendes Study on the effect of thermal pre-treatments in the thermophilic anaerobic digestion of a potato peel waste. Proceedings of the International Anaerobic Digestion Symposium within the BioGasWorld 2013. Berlin, Germany: German Society for Sustainable Biogas and Bioenergy Utilisation, 2013. Abstractbiogas_world_2013_santos_et_al_2013.pdf

This work aimed to study the effect of different pre-treatments applied to a potato peel residue, in a thermophilic Anaerobic Digestion (AD) process. All samples were subjected to a mechanical pre-treatment through milling to a particle size below 2 mm. The thermal pre-treatments applied consisted of autoclaving the residue at a gauge pressure of 1.2 bar, under a temperature of 122°C, and for 20, 35 and 55 minutes: assays E122.20, E122.35 and E122.55, respectively. The control assay was performed on a ground residue, which was not submitted to any thermal pre-treatment. All pre-treated residues were subjected to an AD process in a CSTR reactor at 49±1°C. The experimental data showed that the highest methane percentages were very similar (about 92% v/v) for all samples submitted to the thermal pre-treatments. For the control assay, the highest percentage of methane was 87.9% (v/v). The highest biogas yields were recorded in the trial E122.35 (646±50 cm3.g-1 CODremoved), against only 250±20 cm3.g-1 CODremoved for the control assay. The highest biogas yields for VSremoved were attained in the assays E122.55 and E122.35, with values of 646±48 cm3.g-1 VSremoved and 634±59 cm3.g-1 VSremoved, respectively. Globally, the yields registered for the assay E122.35 were similar to those determined in the assay E122.55. Due to the lower energy consumption during the pre-treatment performed in the assay E122.35, this was considered to be the most suitable pre-treatment for this type of residue.