Export 41 results:
Sort by: Author Title Type [ Year  (Desc)]
Santos, Susana, Nuno Lapa, Andreia Alves, João Morais, and Benilde Mendes. "Analytical methods and validation for determining trace elements in red wines." Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes. 48.5 (2013): 364-375. AbstractWebsite

The objective of this work is to quantify As, Hg, Cd, Ni and Pb in Portuguese red wines. First, the methods for the quantification of trace elements in red wines were validated. Several pre-treatments were compared, namely a pre-digestion process with HNO3, a pre-oxidation step with H2O2, and a spiking step of wine samples with a known concentration of the trace elements analyzed. Except for As, it was determined that the quantification of the trace elements does not require a pre-digestion process with HNO3. For all of the trace elements analyzed, a pre-oxidation step with H2O2 may enable an accurate quantification. The techniques chosen for the quantification of trace elements were hydride generation atomic absorption spectrometry (HGAAS) for As and Hg, electrothermal atomic absorption spectrometry (ETAAS) for Cd, and flame atomic absorption spectrometry (FAAS) for Ni and Pb. In the second stage of this work, 25 Portuguese red wines spanning all of the red wine-producing regions were analyzed for all of the five trace elements referred to above. Only Cd and Pb have shown concentrations above the limit values defined by the “Organization Internationale de la Vigne et du Vin.” The Target Hazard Quotient (THQ) equation was used to determine in which wine-producing regions that wine consumption can be a problem for public health in terms of the concentrations of the five trace elements analyzed. THQ values have indicated that for the universe of the 25 red wines analyzed no region produces wines that can pose problems for public health, when the Portuguese red wine standard consumption is considered.

Barbosa, Rui, Diogo Dias, Nuno Lapa, Helena Lopes, and Benilde Mendes. "Chemical and ecotoxicological properties of size fractionated biomass ashes." Fuel Processing Technology. 109 (2013): 124-132. AbstractWebsite

The main aim of this work was to study the chemical and ecotoxicological properties of ashes produced in a biomass boiler of a pulp and paper industry and evaluate possible differences depending on the particle size of bottom and fly ashes. This industry produces electricity by burning eucalyptus and pine bark in a bubbling fluidized bed combustor. Bottom and fly ashes and their size fractions, obtained by sieving, were analysed for a set of metals and leaching behaviour. The eluates were also submitted to ecotoxicological characterization, using five indicators. The highest concentrations of metals and metalloids were found in the lower particle size fractions of bottom and fly ashes. However, generally, it could not be observed any specific releasing pattern of metals depending on the particle size, except for fly ashes in which the releasing rate of some earth and alkali-earth metals seemed to increase for lower particle size fractions. No specific pattern of the ecotoxicity levels could be associated to the different particle size fractions of ashes. The fractions of bottom ashes with 4,000–10,000 μm and > 10,000 μm have presented the lowest ecotoxicity levels. All the samples were classified as ecotoxic, except the fraction of bottom ashes > 10,000 μm.

Santos, Susana, Débora Azeitona, Nuno Lapa, João Morais, Helena Lopes, and Benilde Mendes Study on the effect of thermal pre-treatments in the thermophilic anaerobic digestion of a potato peel waste. Proceedings of the International Anaerobic Digestion Symposium within the BioGasWorld 2013. Berlin, Germany: German Society for Sustainable Biogas and Bioenergy Utilisation, 2013. Abstractbiogas_world_2013_santos_et_al_2013.pdf

This work aimed to study the effect of different pre-treatments applied to a potato peel residue, in a thermophilic Anaerobic Digestion (AD) process. All samples were subjected to a mechanical pre-treatment through milling to a particle size below 2 mm. The thermal pre-treatments applied consisted of autoclaving the residue at a gauge pressure of 1.2 bar, under a temperature of 122°C, and for 20, 35 and 55 minutes: assays E122.20, E122.35 and E122.55, respectively. The control assay was performed on a ground residue, which was not submitted to any thermal pre-treatment. All pre-treated residues were subjected to an AD process in a CSTR reactor at 49±1°C. The experimental data showed that the highest methane percentages were very similar (about 92% v/v) for all samples submitted to the thermal pre-treatments. For the control assay, the highest percentage of methane was 87.9% (v/v). The highest biogas yields were recorded in the trial E122.35 (646±50 cm3.g-1 CODremoved), against only 250±20 cm3.g-1 CODremoved for the control assay. The highest biogas yields for VSremoved were attained in the assays E122.55 and E122.35, with values of 646±48 cm3.g-1 VSremoved and 634±59 cm3.g-1 VSremoved, respectively. Globally, the yields registered for the assay E122.35 were similar to those determined in the assay E122.55. Due to the lower energy consumption during the pre-treatment performed in the assay E122.35, this was considered to be the most suitable pre-treatment for this type of residue.

Bernardo, M., M. Gonçalves, N. Lapa, R. Barbosa, B. Mendes, and F. Pinto. "Characterization of chars produced in the co-pyrolysis of different wastes: decontamination study." Journal of Hazardous Materials. 207-208 (2012): 28-35. AbstractWebsite

The present work is devoted to the study of the decontamination of chars obtained in the co-pyrolysis of plastics, biomass and tyre wastes. The chars were extracted with several organic solvents of different polarities either individually or in sequence. The ability of each selected extractant to remove toxic pollutants was evaluated by comparing the extraction yields and by characterizing the crude extracts with a combination of chemical analysis and toxicity bioassays. Also, the mineral composition of the treated and non-treated chars was assessed. The results obtained in this study indicate that hexane is the more efficient extraction solvent to be used in the organic decontamination of chars obtained in the co-pyrolysis of plastics, tyres and biomass. A sequential extraction with solvents of increasing polarity can provide a better decontamination of the raw pyrolysis char than any individual extraction. The compounds removed from the char during the decontamination process are mainly aliphatic hydrocarbons and aromatic hydrocarbons, therefore a material that may be upgraded to be used as a fuel and/or as raw material for the organic chemical industry.

Barbosa, Rui, Nuno Lapa, Helena Lopes, and Benilde Mendes. "Chemical and ecotoxicological properties of ashes produced in the co-combustion of coal and meat and bone meal in a fluidized bed reactor." Fuel Processing Technology. 96 (2012): 48-55. AbstractWebsite

The co-combustion of coal and meat and bone meal (MBM) is a possible energetic valorization route for this residue. Nevertheless, the properties of ashes produced need to be studied. To evaluate these properties, three combustion tests were performed in a fluidized bed reactor: 1) coal combustion; 2) coal + MBM (85% + 15%) co-combustion; 3) MBM combustion. The characterization of ashes was focused on the following aspects: (1) Determination of bulk content of Cr, Zn, Ni, Cu, Pb, Cd, Hg, As, Ba, Mo, Sb, Se, Ca, Na, Mg, Fe, Al and K; (2) Leaching properties of ashes based on the European Standard EN12457-2. The eluates were characterized for some of the metals referred above and for Cr VI, CN−, pH, Cl−, F−, SO42−, dissolved organic carbon and total dissolved solids. The eluates were also characterized for ecotoxicological levels by using the following bio-indicators: bacterium V. fischeri, microalgae S. capricornutum and microcrustacean D. magna. The ashes produced in the combustion of coal and co-combustion of coal + MBM have not shown evidences of ecotoxicity, while the ashes produced in the combustion of MBM were classified as ecotoxic. An assessment of the relationship between the chemical and the ecotoxicological properties of the ashes was performed. pH seemed to be the chemical parameter that most influences the ecotoxicological level of ashes.

Teixeira, Paula, Helena Lopes, Ibrahim Gulyurtlu, Nuno Lapa, and Pedro Abelha. "Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed." Biomass & Bioenergy. 39 (2012): 192-203. AbstractWebsite

Over the last decades, several indices based on ash chemistry and ash fusibility have been used to predict the ash behaviour during coal combustion, namely, its tendency for slagging and fouling. However, due to the physical–chemical differences between coals and biomass, in this work only the applicability of an ash fusibility index (AFI) to the combustion and co-combustion of three types of biomass (straw pellets, olive cake and wood pellets) with coals was evaluated. The AFI values were compared with the behaviour of ash during combustion in a pilot fluidized bed and a close agreement was observed between them. For a better understanding of the mechanisms associated with bed ash sintering, they were evaluated by SEM/EDS and the elements present on the melted ash were identified. Evidences of different sintering mechanisms were found out for the fruit biomass and herbaceous biomass tested, depending on the relative proportions of problematic elements. The particles deposited on a fouling probe inserted in the FBC were analyzed by XRD and the differences between the compounds identified allowed concluding that the studied biomasses present different tendencies for fouling. Identification of KCl and K2SO4 in the deposits confirmed the higher tendency for fouling of fruit biomass tested rather than wood pellets.

Lapa, N., R. Barbosa, and B. Mendes. "Intrinsic properties of new materials for civil engineering works based on the reuse of MSWI bottom ashes: chemical and ecotoxicological assessment." Urban Mining: A global cycle approach to resource recovery from solid waste. Eds. R. Cossu, V. Salieri, and V. Bisinella. Padova: CISA Publisher, 2012. 298-307.
Bernardo, M., N. Lapa, M. Gonçalves, B. Mendes, F. Pinto, I. Fonseca, and H. Lopes. "Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures." Journal of Hazardous Materials. 219-220 (2012): 196-202. AbstractWebsite

The present work aims to perform a multistep upgrading of chars obtained in the co-pyrolysis of PE, PP and PS plastic wastes, pine biomass and used tires. The quality of the upgraded chars was evaluated by measuring some of their physico-chemical properties in order to assess their valorisation as adsorbents’ precursors. The crude chars were submitted to a sequential solvent extraction with organic solvents of increasing polarity (hexane, mixture 1:1 v/v hexane:acetone and acetone) followed by an acidic demineralization procedure with 1 M HCl solution. The results obtained showed that the upgrading treatment allow the recovery of 63–81% of the pyrolysis oils trapped in the crude chars and a reduction in the char's ash content in the range of 64–86%. The textural and adsorption properties of the upgraded chars were evaluated and the results indicate that the chars are mainly mesoporous and macroporous materials, with adsorption capacities in the range of 3.59–22.2 mg/g for the methylene blue dye. The upgrading treatment allowed to obtain carbonaceous materials with quality to be reused as adsorbents or as precursors for activated carbon.

Bernardo, M., N. Lapa, M. Gonçalves, B. Mendes, and F. Pinto. "Study of the organic extraction and acid leaching of chars obtained in the pyrolysis of plastics, tire rubber and forestry biomass wastes." Procedia Engineering. 42 (2012): 1909-1916. AbstractWebsite

The present work aims to perform a characterization of chars obtained in the co-pyrolysis of waste mixtures composed by plastics, tires and pine biomass, to provide knowledge about the composition, leaching behavior and risk assessment of these materials in order to define strategies for their possible valorization or safe disposal. The chars were submitted to sequential solvent extractions with organic solvents of increasing polarity that allow the recovery of significant amounts of the pyrolysis oils trapped in the crude chars improving the yield of the pyrolysis liquids. An acidic demineralization procedure was successfully applied to the chars and high efficiency removals of the majority of the heavy metals were achieved. The demineralization study also demonstrated that hazardous heavy metals such as chromium, nickel and cadmium are significantly immobilized in the char matrix, and other heavy metals of concern such as zinc and lead will not represent a leaching problem if acidic conditions were not used. The obtained chars present sufficient quality and characteristics to be used as fuel or alternatively, to be used as adsorbents or precursors of activated carbon.

Teixeira, Paula, Helena Lopes, Ibrahim Gulyurtlu, and Nuno Lapa. "Uncertainty estimation to evaluate mass balances on a combustion system." Accreditation and Quality Assurance. 17.2 (2012): 159-166. AbstractWebsite

Mass balances of ash and potassium for a fluidized bed combustor were performed incorporating measurement uncertainties. The total output mass of ash or a chemical element should be equal to the mass in the input fuel; however, this is not often achieved. A realistic estimation of recovery uncertainty can support the reliability of a mass balance. Estimation of uncertainty helps to establish a reliable evaluation of the recovery ratio of ash mass and elemental mass. This may clarify whether any apparent lack in closing the mass balance can be attributed to uncertainties. The evaluation of measurement uncertainty for different matrices, namely coal, biomass, sand and ashes from different streams was based on internal quality control data and external quality control data, namely analysis of samples from proficiency tests or use of a certified reference material. The evaluation of intermediate precision and trueness allowed the estimation of measurement uncertainty. Due to the different physic and chemical characteristics of the studied matrices, the uncertainty of precision was evaluated using R-charts of data obtained from the analysis of duplicates for the majority of samples. This allowed evaluating sample heterogeneity effects. The instrumental acceptance criterion was also considered and included in the combined uncertainty. The trueness was evaluated using data from several proficiency tests and from analysis of a certified reference material or sample spiking. Statistically significant bias was included.

Teixeira, P., H. Lopes, I. Gulyurtlu, and N. Lapa. "Use of chemical fractionation to understand partitioning of biomass ash constituents during co-firing in fluidized bed combustion." Fuel. 101 (2012): 215-227. AbstractWebsite

Three species of biomass origin (straw pellets, olive cake and wood pellets) and two coals from different countries (Coal Polish and Coal Colombian) have been studied to understand the fate of their ash forming matter during the combustion process and to investigate the influence of co-firing biomass with coal. Three different approaches to investigate the ash behaviour were employed: (1) chemical fractionation analysis to evaluate the association/reactivity of ash forming elements in the fuels as a prediction tool, (2) establishment of elements partitioning in ash streams produced in the combustion and co-combustion trials, and (3) evaluation of enrichment factors of elements in the ash streams. The chemical fractionation analysis was applied to all fuels used to evaluate how the association/reactivity of elements making up ash may influence their behaviour during combustion. Combustion tests were carried out on a pilot scale fluidized bed combustor (FBC). Four ash streams were obtained at different locations. The uncertainty of measurements was estimated allowing a critical evaluation of mass balances over the combustion system and the partitioning of elements in the ash streams. The enrichment factors of elements in the several ash streams were estimated, incorporating uncertainties associated with analytical measurements. Results obtained showed that for FBC the relation between the chemical fractionation and the experimental partitioning is strongly affected by elutriation of particles. The element enrichment factor estimated for each ash stream, using Al as a reference element, revealed better correlations with the elements reactivity obtained by chemical fractionation because it overcomes particles elutriation effects. Nevertheless, it was observed that the reactivity estimated by chemical fractionation could not be solely interpreted as tendency of the elements to volatilize on FBC system, as reaction in bed zone of boiler may also occur retaining reactive elements.

Barbosa, Rui, Diogo Dias, Nuno Lapa, and Benilde Mendes. "Using biomass ashes in concretes exposed to salted water and freshwater: mechanical and chemical properties." Advanced Materials Research. 587 (2012): 16-20. AbstractWebsite

The main aim of this work was to assess the possibility of using biomass ashes as substitutes for cement and natural aggregates in concretes without compromising their mechanical and chemical properties. Thirteen concrete formulations were prepared with different percentages of bottom and fly ashes produced at a forest biomass power plant. These formulations were submitted to mechanical compressive strength assays, after 28, 60 and 90 days of maturation. The reference formulation F1 that was produced without biomass ashes and one formulation incorporating fly and bottom ashes, F4, were selected for further characterization. After 90 days of maturation, the selected formulations were submitted to the leaching test described in the European Standard EN12457-2 (L/S ratio of 10 L/kg, in a batch extraction cycle of 24h) by using two different leaching agents: a synthetic marine medium (ASPM medium) and a synthetic freshwater medium (ISO 6341 medium). The eluates produced were submitted to chemical characterization which comprised a set of metals (As, Sb, Se, Cu, Zn, Ba, Hg, Cd, Mo, Pb, Ni, Cr, Cr VI, Al, Fe, Mg, Na, K and Ca), pH, SO42-, F-, dissolved organic carbon, chlorides, phenolic compounds and total dissolved solids. The substitution of 10% cement by fly ashes has not promoted the reduction of the compressive strength of concrete. The new formulation F4 has presented emission levels of chemical species similar or even lower to those observed for the reference formulation F1.

Morais, J., R. Barbosa, N. Lapa, B. Mendes, and I. Gulyurtlu. "Environmental and socio-economic assessment of co-combustion of coal, biomass and non-hazardous wastes in a power plant." Resources, Conservation & Recycling. 55 (2011): 1109-1118. AbstractWebsite

Under the framework of the European project named COPOWER, the possibility to partially substitute coal used in a 243 MWth Power Plant by biomass and non-hazardous wastes for the production of electricity and steam was assessed. Three combustion scenarios were studied, based on the combustion tests performed in a Power Plant located in Duisburg (Germany): Scenario 0 (Sc0) – combustion of coal; Scenario 1 (Sc1) – combustion of coal + sewage sludge (SS) + meat and bone meal (MBM); Scenario 2 (Sc2) – coal + SS + wood pellets (WP). An environmental and socio-economic assessment of these three scenarios was performed. In the environmental point of view, Sc0 was the worst scenario, mainly due to the emission of greenhouse gases (GHG). Sc1 was the best scenario, mainly due to the reduction of GHG emission, eutrophication chemical species and ozone depletion gases. In the socio-economic point of view, Sc0 was the worst scenario, mainly due to the absence of GHG abatement, and Sc1 was the best scenario due to the best cost of electricity production and negative cost of avoided emissions.

Barbosa, R., N. Lapa, H. Lopes, I. Gulyurtlu, and B. Mendes. "Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions." Waste Management. 31.9-10 (2011): 2009-2019. AbstractWebsite

Two combustion tests were performed in a fluidized bed combustor of a thermo-electric power plant: (1) combustion of coal; (2) co-combustion of coal (68.7% w/w), sewage sludge (9.2% w/w) and meat and bone meal (MBM) (22.1% w/w).

Three samples of ashes (bottom, circulating and fly ashes) were collected in each combustion test. The ashes were submitted to the following assays: (a) evaluation of the leaching behaviour; (b) stabilization/solidification of fly ashes and evaluation of the leaching behaviour of the stabilized/solidified (s/s) materials; (c) production of concrete from bottom and circulating ashes. The eluates of all materials were submitted to chemical and ecotoxicological characterizations. The crude ashes have shown similar chemical and ecotoxicological properties. The s/s materials have presented compressive strengths between 25 and 40 MPa, low emission levels of metals through leaching and were classified as non-hazardous materials. The formulations of concrete have presented compressive strengths between 12 and 24 MPa. According to the Dutch Building Materials Decree, some concrete formulations can be used in both scenarios of limited moistening and without insulation, and with permanent moistening and with insulation.

Bernardo, M., M. Gonçalves, N. Lapa, and B. Mendes. "Determination of alkylphenols in eluates from pyrolysis solid residues using dispersive liquid-liquid microextraction." Chemosphere. 79.11 (2010): 1026-1032. AbstractWebsite

Dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–mass spectrometry (GC–MS) was applied for the determination of 11 alkylphenols in eluates of chars produced in the co-pyrolysis of different wastes.

The optimized DLLME procedure, 4 mL of sample solution, 15 μL of trichloroethylene as extraction solvent, 1 mL of acetone as dispersion solvent and addition of 15% (w/v) of NaCl, was validated. Under the optimum conditions, the enrichment factors were in the range of 82–180. Calibration curves were constructed for each analyte in pure water in the concentration range of 0.5–8 μg/L with correlation coefficients higher than 0.999. The limits of detection were between 0.07 and 0.17 μg/L. The repeatability of the method was evaluated using water samples fortified with the analyte mixture at two concentration levels: the relative standard deviation (RSD) values were between 3.7% and 8.0% for a concentration of 0.5 μg/L, and between 4.2% and 6.4% for a concentration of 3 μg/L. The recoveries of the analytes evaluated by fortification of real eluate samples were in the range of 67.9–97.9% for eluate 1 (obtained from a decontaminated char) and in the range of 61.9–101.4% for eluate 2 (obtained from the untreated char). o-Methylphenol presented low recoveries for both eluates showing a possible matrix effect. The results obtained show that this method is adequate for the determination of alkylphenols in environmental aqueous samples and presents itself as a fast and inexpensive technique, using minor amounts of organic solvents.

Bernardo, M., N. Lapa, M. Gonçalves, R. Barbosa, B. Mendes, F. Pinto, and I. Gulyurtlu. "Toxicity of char residues produced in the co-pyrolysis of different wastes." Waste Management. 30.4 (2010): 628-635. AbstractWebsite

Char residues produced in the co-pyrolysis of different wastes (plastics, pine biomass and used tyres) were characterized using chemical and toxicity assays. One part of the solid chars was submitted to extraction with dichloromethane (DCM) in order to reduce the toxicity of the char residues by removing organic contaminants. The different volatility fractions present in the extracted char (Char A) and in the raw char (Char B) were determined by progressive weight loss combustion. A selected group of heavy metals (Cd, Pb, Zn, Cu, Hg and As) was determined in both chars.

The chars were subjected to the leaching test ISO/TS 21268 – 2, 2007 and the resulting eluates were further characterized by determining a group of inorganic parameters (pH, conductivity, Cd, Pb, Zn, Cu, Hg and As contents) and the concentrations of several organic contaminants (volatile aromatic hydrocarbons and alkyl phenols). An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri.

The chemical and ecotoxicological results were analyzed according to the Council Decision 2003/33/CE and the criteria on the evaluation methods of waste ecotoxicity (CEMWE).

The results obtained in this work indicated that the extraction with DCM is an effective method for the removal of organic contaminants of high to medium volatility from pyrolysis solid residues, thus decreasing their toxicity potential. Zn can be leached from the chars even after the DCM extraction treatment and can contribute to the ecotoxicity of the eluates obtained from chars.

Both chars (treated and non treated with DCM) were classified as hazardous and ecotoxic wastes.

Bernardo, M., N. Lapa, R. Barbosa, M. Gonçalves, B. Mendes, F. Pinto, and I. Gulyurtlu. "Chemical and ecotoxicological characterization of solid residues produced during the co-pyrolysis of plastics and pine biomass." Journal of Hazardous Materials. 166.1 (2009): 309-317. AbstractWebsite

A mixture of 70% (w/w) pine biomass and 30% (w/w) plastics (mixture of polypropylene, polyethylene, and polystyrene) was subjected to pyrolysis at 400 °C, for 15 min, with an initial pressure of 40 MPa. Part of the solid residue produced was subjected to extraction with dichloromethane (DCM). The extracted residue (residue A) and raw residue (residue B) were analyzed by weight loss combustion and submitted to the leaching test ISO/TS 21268-2 using two different leachants: DCM (0.2%, v/v) and calcium chloride (0.001 mol/L). The concentrations of the heavy metals Cd, Cr, Ni, Zn, Pb and Cu were determined in the eluates and in the two residues. The eluates were further characterized by determining their pH and the concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX). The presence of other organic contaminants in the eluates was qualitatively evaluated by gas chromatography, coupled with mass spectrometry. An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Ecotoxicity (CEMWE). Residue A was not considered to be ecotoxic by the ecotoxicological criterion (EC50 (30 min) ≥10%), but it was considered to be ecotoxic by the chemical criterion (Ni ≥ 0.5 mg/L). Residue B was considered to be ecotoxic by the ecotoxicological criterion: EC50 (30 min) ≤ 10%. Besides that, residue B was considered to be hazardous according the European legislation (BTEX concentrations higher than 100 ppb). The results indicate that volatile organic contaminants can be present in sufficient amounts in these residues and their eluates to induce ecotoxicity levels. The extraction of the pyrolysis residue with DCM was an efficient method for removing lighter organic contaminants.

Barbosa, R., N. Lapa, D. Boavida, H. Lopes, I. Gulyurtlu, and B. Mendes. "Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes." Journal of Hazardous Materials. 170.2-3 (2009): 902-909. AbstractWebsite

The co-combustion of sewage sludge (SS) and coal is widely used for the treatment and thermal valorization of SS produced in wastewater treatment plants. The chemical and ecotoxicological properties of the ashes produced in this thermal treatment have not been fully studied. Two combustion tests were performed in a fluidized bed combustor. Colombian coal was used as fuel in test A. A blend (1 + 1) of this coal and a stabilized SS (Biogran®) was used in a second test B. Samples of the bottom and fly ashes trapped in two sequential cyclones were collected. The characterization of the ashes was focused on two main aspects: (1) the bulk content of a set of metals and (2) the characterization of eluates produced according to the European Standard leaching test EN 12457-2. The eluates were submitted to an ecotoxicological characterization for two bio-indicators. In what concerns the bulk content of ashes, both combustion tests have produced ashes with different compositions. The ashes formed during the co-combustion test have shown higher concentrations of metals, namely Cr, Cu, Ni, Pb, Zn and Fe for all ashes. The leaching test has shown low mobility of these elements from the by-products produced during the combustion and co-combustion tests. Cr and Cr(VI) were mainly detected in the eluates of the 1st cyclone ashes produced in both combustion tests and in the 2nd cyclone ashes produced in the co-combustion test.

Considering the ecotoxicity assays, the eluates of bottom and fly ashes for both combustion and co-combustion tests have shown low ecotoxic levels. The micro-crustacean Daphnia magna was generally more sensitive than the bacterium Vibrio fischeri. CEMWE criterion has allowed to classify the bottom ashes for both combustion and co-combustion tests as non-toxic residues and the fly ashes collected in both cyclones as toxic.

Bernardo, M., M. Gonçalves, N. Lapa, R. Barbosa, B. Mendes, F. Pinto, and I. Gulyurtlu. "Determination of aromatic compunds in leachates from pyrolysis solid residues using HS-GC-MS and DLLME-GC-MS." Talanta. 80.1 (2009): 104-108. AbstractWebsite

A method for the determination of 15 aromatic hydrocarbons in eluates from solid residues produced during the co-pyrolysis of plastics and pine biomass was developed. In a first step, several sampling techniques (headspace solid phase microextraction (HS-SPME), static headspace sampling (HS), and dispersive liquid–liquid microextraction (DLLME) were compared in order to evaluate their sensitivity towards these analytes. HS-SPME and HS sampling had the better performance, but DLLME was itself as a technique able to extract volatiles with a significant enrichment factor.

HS sampling coupled with GC–MS was chosen for method validation for the analytes tested. Calibration curves were constructed for each analyte with correlation coefficients higher than 0.999. The limits of detection were in the range of 0.66–37.85 ng/L. The precision of the HS method was evaluated and good repeatability was achieved with relative standard deviations of 4.8–13.2%. The recoveries of the analytes were evaluated by analysing fortified real eluate samples and were in the range of 60.6–113.9%.

The validated method was applied in real eluate samples. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the compounds in higher concentrations.

The DLLME technique coupled with GC–MS was used to investigate the presence of less volatile contaminants in eluate samples. This analysis revealed the presence of significant amounts of alkyl phenols and other aromatic compounds with appreciable water solubility.

Santos Oliveira, J. F., B. Mendes, and N. Lapa Resíduos: Gestão, Tratamento e sua Problemática em Portugal. Lisboa: Lidel, 2009.Website
Paradela, F., F. Pinto, I. Gulyurtlu, I. Cabrita, and N. Lapa. "Study of the co-pyrolysis of biomass and plastic wastes." Clean Technologies and Environmental Policy. 11.1 (2009): 115-122. AbstractWebsite

This work aimed to study the recovery of two types of waste by the process of pyrolysis. The obtained results show that the adding of a plastic mix improves the overall efficiency of the slow pyrolysis of pine. Therefore, it was possible to achieve higher liquid yields and less solid product than in the classic slow pyrolysis carbonization of biomass. The obtained liquids showed heating values similar to that of heating fuel oil. The gas products had energetic contents superior to that of producer gas, and the obtained solid fractions showed heating values higher than some coals. There were also identified some typical products of fast biomass pyrolysis used as raw material in several industries. The effects of experimental conditions in product yield and composition were also studied. The parameters that showed higher influence were (with its increase): reaction time on gas product composition (increase of the alkane content) and on liquid composition (increase in aromatics content); reaction temperature on product yield (decrease of liquid yield with increase of solids and gases) and on gas product composition (increase in alkane content); initial pressure on liquid composition (increase in the aromatics content) and mainly the pine content of the initial mixture on products yield (increase of gas and solid yield with a decrease in liquids) and on the gas product composition (favouring CO and CO2 formation).

Dunea, Daniel, Adrian Dunea, Nuno Lapa, and Virgil Moise. "Developing a remote laboratory for environmental monitoring using mobile technology." Scientific Bulletin of Electrical Engineering Faculty. 2 (2008): 69-75. Abstractdunea_et_al_2008_developing_a_remote_laboratory_for_environ_monitoring_using_mobile_technology.pdfWebsite

This paper presents the mobile technology utilization in improving the remote access to the data acquisition processes of several automated monitoring system for air quality, water quality, and crop canopy microclimate. The system facilitates mobile environmental management and decision making by using in-situ measurements, GSM/GPRS informational fluxes, Pocket PCs, dGPS and mobile GIS resources. Data is retrieved via GSM/GPRS data modem to remote computer using digital (GSM) phone network. The main outcomes of this study were as follows: 1. designing the hardware, communication and software infrastructure of the system using telemetry features, 2. establishing the wireless connections and remote access from PDAs to the measurement servers, 3. programming and testing specific control virtual instruments (Vis) in NI LabVIEWTM, 4. obtaining a portable solution of statistical analysis and survey with PDA Vi (Virtual Instruments) interfaces for Pocket PC to gather, store, customize and report data combined with statistical processing functions, and 5. identifying mobile GIS applications for the environmental protection. The remote-accessing of the GIS server features, provided in-situ electronically reviews, mark up, and precise measurements of the site pollution plans. One possible solution to overcome the PDA hardware and software restraints is enabling the remote access and control of the DAQ and GIS software resources of the measurement server via internet.

Lapa, N., R. Barbosa, M. H. Lopes, B. Mendes, P. Abelha, I. I. Gulyurtlu, and J. Santos Oliveira. "Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor." Journal of Hazardous Materials. 147.1-2 (2007): 175-183. AbstractWebsite

In 1999, the DEECA/INETI and the UBiA/FCT/UNL started a researching project on the partition of heavy metals during the combustion of stabilised sewage sludge (Biogran®), in a fluidised-bed reactor, and on the quality of the bottom ashes and fly ashes produced. This project was entitled Bimetal and was funded by the Portuguese Foundation for Science and Technology. In this paper only the results on the combustion of Biogran® are reported. The combustion process was performed in two different trials, in which different amounts of sewage sludge and time of combustion were applied. Several ash samples were collected from the bed (bottom ashes) and from two cyclones (first cyclone and second cyclone ashes). Sewage sludge, bed material (sand) and ash samples were submitted to the leaching process defined in the European leaching standard EN 12457-2. The eluates were characterized for a set of inorganic chemical species. The ecotoxicological levels of the eluates were determined for two biological indicators (Vibrio fischeri and Daphnia magna). The results were compared with the limit values of the CEMWE French Regulation. The samples were also ranked according to an index based on the chemical characterization of the eluates. It was observed an increase of the concentration of metals along the combustion system. The ashes trapped in the second cyclone, for both combustion trials, showed the highest concentration of metals in the eluates. Chemically, the ashes of the second cyclone were the most different ones. In the ecotoxicological point of view, the ecotoxicity levels of the eluates of the ashes, for both combustion cycles, did not follow the same pattern as observed for the chemical characterization. The ashes of the first cyclone showed the highest ecotoxicity levels for V. fischeri and D. magna. This difference on chemical and ecotoxicological results proves the need for performing both chemical and ecotoxicological characterizations of the sub-products of such type of thermal processes.

Mahiout, A., R. Damann, J. Pera, A. Luonsi, M. Kolari, J. Siivinen, J. F. Santos Oliveira, N. Lapa, G. Pourcelly, and F. Aslan. "Industrial liquid effluents in the pulp and paper industry." Industrial Liquid Effluents - A Guide Book on the Treatment of Effluents from the Mining/Metallurgy, Paper, Plating and Textile Industries. Eds. M. Cox, P. Négré, and L. Yurramendi. Donostia - San Sebastián: INASMET-Tecnalia and European Commission, 2006. 33-73.