Export 4 results:
Sort by: Author Title [ Type  (Asc)] Year
Book Chapter
Mahiout, A., R. Damann, J. Pera, A. Luonsi, M. Kolari, J. Siivinen, J. F. Santos Oliveira, N. Lapa, G. Pourcelly, and F. Aslan. "Industrial liquid effluents in the pulp and paper industry." Industrial Liquid Effluents - A Guide Book on the Treatment of Effluents from the Mining/Metallurgy, Paper, Plating and Textile Industries. Eds. M. Cox, P. Négré, and L. Yurramendi. Donostia - San Sebastián: INASMET-Tecnalia and European Commission, 2006. 33-73.
Journal Article
Barbosa, Rui, Diogo Dias, Nuno Lapa, Helena Lopes, and Benilde Mendes. "Chemical and ecotoxicological properties of size fractionated biomass ashes." Fuel Processing Technology. 109 (2013): 124-132. AbstractWebsite

The main aim of this work was to study the chemical and ecotoxicological properties of ashes produced in a biomass boiler of a pulp and paper industry and evaluate possible differences depending on the particle size of bottom and fly ashes. This industry produces electricity by burning eucalyptus and pine bark in a bubbling fluidized bed combustor. Bottom and fly ashes and their size fractions, obtained by sieving, were analysed for a set of metals and leaching behaviour. The eluates were also submitted to ecotoxicological characterization, using five indicators. The highest concentrations of metals and metalloids were found in the lower particle size fractions of bottom and fly ashes. However, generally, it could not be observed any specific releasing pattern of metals depending on the particle size, except for fly ashes in which the releasing rate of some earth and alkali-earth metals seemed to increase for lower particle size fractions. No specific pattern of the ecotoxicity levels could be associated to the different particle size fractions of ashes. The fractions of bottom ashes with 4,000–10,000 μm and > 10,000 μm have presented the lowest ecotoxicity levels. All the samples were classified as ecotoxic, except the fraction of bottom ashes > 10,000 μm.

Dunea, Daniel, Adrian Dunea, Nuno Lapa, and Virgil Moise. "Developing a remote laboratory for environmental monitoring using mobile technology." Scientific Bulletin of Electrical Engineering Faculty. 2 (2008): 69-75. Abstractdunea_et_al_2008_developing_a_remote_laboratory_for_environ_monitoring_using_mobile_technology.pdfWebsite

This paper presents the mobile technology utilization in improving the remote access to the data acquisition processes of several automated monitoring system for air quality, water quality, and crop canopy microclimate. The system facilitates mobile environmental management and decision making by using in-situ measurements, GSM/GPRS informational fluxes, Pocket PCs, dGPS and mobile GIS resources. Data is retrieved via GSM/GPRS data modem to remote computer using digital (GSM) phone network. The main outcomes of this study were as follows: 1. designing the hardware, communication and software infrastructure of the system using telemetry features, 2. establishing the wireless connections and remote access from PDAs to the measurement servers, 3. programming and testing specific control virtual instruments (Vis) in NI LabVIEWTM, 4. obtaining a portable solution of statistical analysis and survey with PDA Vi (Virtual Instruments) interfaces for Pocket PC to gather, store, customize and report data combined with statistical processing functions, and 5. identifying mobile GIS applications for the environmental protection. The remote-accessing of the GIS server features, provided in-situ electronically reviews, mark up, and precise measurements of the site pollution plans. One possible solution to overcome the PDA hardware and software restraints is enabling the remote access and control of the DAQ and GIS software resources of the measurement server via internet.

Barbosa, Rui, Diogo Dias, Nuno Lapa, and Benilde Mendes. "Using biomass ashes in concretes exposed to salted water and freshwater: mechanical and chemical properties." Advanced Materials Research. 587 (2012): 16-20. AbstractWebsite

The main aim of this work was to assess the possibility of using biomass ashes as substitutes for cement and natural aggregates in concretes without compromising their mechanical and chemical properties. Thirteen concrete formulations were prepared with different percentages of bottom and fly ashes produced at a forest biomass power plant. These formulations were submitted to mechanical compressive strength assays, after 28, 60 and 90 days of maturation. The reference formulation F1 that was produced without biomass ashes and one formulation incorporating fly and bottom ashes, F4, were selected for further characterization. After 90 days of maturation, the selected formulations were submitted to the leaching test described in the European Standard EN12457-2 (L/S ratio of 10 L/kg, in a batch extraction cycle of 24h) by using two different leaching agents: a synthetic marine medium (ASPM medium) and a synthetic freshwater medium (ISO 6341 medium). The eluates produced were submitted to chemical characterization which comprised a set of metals (As, Sb, Se, Cu, Zn, Ba, Hg, Cd, Mo, Pb, Ni, Cr, Cr VI, Al, Fe, Mg, Na, K and Ca), pH, SO42-, F-, dissolved organic carbon, chlorides, phenolic compounds and total dissolved solids. The substitution of 10% cement by fly ashes has not promoted the reduction of the compressive strength of concrete. The new formulation F4 has presented emission levels of chemical species similar or even lower to those observed for the reference formulation F1.