Publications

Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Lapa, N., R. Barbosa, and B. Mendes. "Intrinsic properties of new materials for civil engineering works based on the reuse of MSWI bottom ashes: chemical and ecotoxicological assessment." Urban Mining: A global cycle approach to resource recovery from solid waste. Eds. R. Cossu, V. Salieri, and V. Bisinella. Padova: CISA Publisher, 2012. 298-307.
2009
Paradela, F., F. Pinto, I. Gulyurtlu, I. Cabrita, and N. Lapa. "Study of the co-pyrolysis of biomass and plastic wastes." Clean Technologies and Environmental Policy. 11.1 (2009): 115-122. AbstractWebsite

This work aimed to study the recovery of two types of waste by the process of pyrolysis. The obtained results show that the adding of a plastic mix improves the overall efficiency of the slow pyrolysis of pine. Therefore, it was possible to achieve higher liquid yields and less solid product than in the classic slow pyrolysis carbonization of biomass. The obtained liquids showed heating values similar to that of heating fuel oil. The gas products had energetic contents superior to that of producer gas, and the obtained solid fractions showed heating values higher than some coals. There were also identified some typical products of fast biomass pyrolysis used as raw material in several industries. The effects of experimental conditions in product yield and composition were also studied. The parameters that showed higher influence were (with its increase): reaction time on gas product composition (increase of the alkane content) and on liquid composition (increase in aromatics content); reaction temperature on product yield (decrease of liquid yield with increase of solids and gases) and on gas product composition (increase in alkane content); initial pressure on liquid composition (increase in the aromatics content) and mainly the pine content of the initial mixture on products yield (increase of gas and solid yield with a decrease in liquids) and on the gas product composition (favouring CO and CO2 formation).

2006
Mahiout, A., R. Damann, J. Pera, A. Luonsi, M. Kolari, J. Siivinen, J. F. Santos Oliveira, N. Lapa, G. Pourcelly, and F. Aslan. "Industrial liquid effluents in the pulp and paper industry." Industrial Liquid Effluents - A Guide Book on the Treatment of Effluents from the Mining/Metallurgy, Paper, Plating and Textile Industries. Eds. M. Cox, P. Négré, and L. Yurramendi. Donostia - San Sebastián: INASMET-Tecnalia and European Commission, 2006. 33-73.
Lapa, N., R. Barbosa, S. Camacho, R. C. C. Monteiro, M. H. V. Fernandes, and J. S. Oliveira. "Leaching behaviour of a glass produced from a MSWI bottom ash." Materials Science Forum. 514-516 (2006): 1736-1741. AbstractWebsite

This paper is mainly focused on the characterisation of a glass material (GM) obtained from the thermal treatment of a bottom ash (BA) produced at the Municipal Solid Waste (MSW) incineration plant of Valorsul. By melting the BA at 1400ºC during 2 hours, and without using any chemical additives, a homogeneous black-coloured glass was obtained. The thermal and mechanical properties of this glass were characterised. The thermal expansion coefficient, measured by dilatometry, was 9-10 x 10-6 per ºC and the modulus of rupture, determined by four-point bending test, was 75±6 MPa, which are similar values to those exhibited by commercial soda-lime-silica glasses used in structural applications. The chemical and the ecotoxicological leaching behaviour of the GM were also analysed. The GM was submitted to a leaching procedure composed of 15 sequential extraction cycles. A liquid/solid (L/S) ratio of 2 l/kg was applied in each cycle. The leachates were filtered through a membrane of PTFE (porosity: 0.45 8m). The filtered leachates were characterised for different chemical parameters and for an ecotoxicological indicator (bacterium Vibrio fischeri). The GM was also submitted to a microwave acidic digestion for the assessment of the total metal content. The crude BA was also submitted to the same experimental procedures. The GM showed levels of chemical emission and ecotoxicity for V. fischeri much lower than those determined for the crude BA. Similar characterisation studies will be pursued with the glass-ceramics produced by adequate thermal treatment of the glass, in order to investigate the effect of the crystallization on the final properties.

2005
Lapa, N., R. Barbosa, S. Camacho, R. C. C. Monteiro, M. H. Fernandes, and J. F. Santos Oliveira. "Leaching behaviour of a glass produced from a MSWI bottom ash." Advanced Materials Forum III, III International Materials Symposium Materiais 2005. Ed. Paula Vilarinho. Universidade de Aveiro, Aveiro: Trans Tech Publications Inc., 2005. 1736-1741. Abstractlapa_et_al_-_to10.o3.pdf

This paper is mainly focused on the characterisation of a glass material (GM) obtained from the thermal treatment of a bottom ash (BA) produced at the Municipal Solid Waste (MSW) incineration plant of Valorsul. By melting the BA at 1400ºC during 2 hours, and without using any chemical additives, a homogeneous black-coloured glass was obtained. The thermal and mechanical properties of this glass were characterised. The thermal expansion coefficient, measured by dilatometry, was 9-10 x 10-6 per ºC and the modulus of rupture, determined by four-point bending test, was 75±6 MPa, which are similar values to those exhibited by commercial soda-lime-silica glasses used in structural applications. The chemical and the ecotoxicological leaching behaviour of the GM were also analysed. The GM was submitted to a leaching procedure composed of 15 sequential extraction cycles. A liquid/solid (L/S) ratio of 2 l/kg was applied in each cycle. The leachates were filtered through a membrane of PTFE (porosity: 0.45 µm). The filtered leachates were characterised for different chemical parameters and for an ecotoxicological indicator (bacterium Vibrio fischeri). The GM was also submitted to a microwave acidic digestion for the assessment of the total metal content. The crude BA was also submitted to the same experimental procedures. The GM showed levels of chemical emission and ecotoxicity for V. fischeri much lower than those determined for the crude BA. Similar characterisation studies will be pursued with the glass-ceramics produced by adequate thermal treatment of the glass, in order to investigate the effect of the crystallization on the final properties.

2003
Lopes, M. H., P. Abelha, N. Lapa, J. S. Oliveira, I. Cabrita, and I. Gulyurtlu. "The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed." Waste Management. 23.9 (2003): 859-870. AbstractWebsite

Co-combustion tests of dry sewage sludges with coal were performed in a pilot bubbling FBC aiming at the characterization of ashes and determining the behaviour of heavy metals in the process. The tests showed compliance with the regulatory levels as far as heavy metal emissions were concerned. The bottom ashes, which accounted for about 70% of the total ash production, were obtained in a granular form, with diameters ranging from 0.5 to 4 mm. The heavy metals were distributed in ashes obtained from different locations of the installation and their concentrations were found to vary depending on the location of capture. The increase in heavy metals content in bottom ashes was not found to lead to higher leachability and ecotoxicity compared to sewage sludges, suggesting that there could be opportunities for their further use. Mercury suffered vaporisation inside the reactor, thus leaving bottom ashes free of contamination by it. However, there was observed a strong retention of mercury in cyclone ashes due to the presence of unburned carbon which probably acted as an adsorbent. The effluent mercury was also found to be mostly associated with the particulate fraction, being less than 20% emitted in gaseous forms. The results suggested that the combustion of the sewage sludge could successfully be carried out and the amount of unburned carbon leaving the combustor but captured in cyclone was large enough to ensure substantial retention of mercury at low temperatures, hence could contribute to an improvement of the mercury release which still remains an issue of great concern to resolve during combustion of waste materials.

2002
Lapa, N., J. F. Santos Oliveira, S. L. Camacho, and L. J. Circeo. "An ecotoxic risk assessment of residue materials produced by the plasma pyrolysis/vitrification (PP/V) process." Waste Management. 22.3 (2002): 335-342. AbstractWebsite

Plasma is the fourth state of matter, following the three states of solid, liquid and gas. Experience has amply demonstrated that solids exposed to the oxygen-deficient plasma flame are converted to liquid, and liquid exposed to the same flame is converted to gas. A low amount of vitrified solid residue material usually remains at the end of this process. Plasma pyrolysis/vitrification (PP/V) has been demonstrated as a safe, efficient, cost-effective technology for the treatment of wastes, including hazardous wastes. Besides the low amounts of gaseous byproducts that PP/V produces, the solid vitrified residue presents a low leachability of pollutants. Studies have been performed in many countries in order to assess the leachability of chemical substances. But from the results of identified studies, none has reported results on the ecotoxicological properties of the leachates. The aim of this study was to contribute to the assessment of ecotoxic risk of four different vitrified materials. Vitrified samples of contaminated soils, municipal solid wastes, and incinerator bottom ashes were submitted to the European leaching pre-standard test number prEN 12457-2. The leachates were analyzed for 22 chemical parameters. The biological characterization comprised the assessment of bioluminescence inhibition of Photobacterium phosphoreum bacterium, growth inhibition of Pseudokirchneriella subcapitata algae and the germination inhibition of Lactuca sativa vegetable. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Toxicity (CEMWT) and a Toxicity Classification System (TCS). The chemical and ecotoxicological results indicated a low leachability of pollutants and a low toxicity level of leachates. All samples studied were as below the TCS class 1 level (no significant toxicity observed) and as non-ecotoxic for CEMWT. Therefore, the environmental ecotoxic risk of the analyzed vitrified samples was determined to be very low.

1995
Guerrero, C., J. Carrasco de Brito, N. Lapa, and J. F. Santos Oliveira. "Re-use of industrial orange wastes as organic fertilizers." Bioresource Technology. 53.1 (1995): 43-51. AbstractWebsite

The aim of this study was to evaluate the possibility of the re-use of industrial orange wastes as organic soil fertilizer. The assay was performed with a lettuce variety widely produced and consumed in Portugal and, consequently, with great commercial interest. Lactuca sativa L. (osteolata variety) was cultivated in Mitcherlich pots containing samples of a poor soil of the Algarve region. This soil was prepared with different amounts of either pulp or peel orange-wastes from an orange-juice industry. The wastes were applied according to an increasing amount of nitrogen. The results obtained were submitted to statistical tests, in order to find the relations between the production of fresh and dry matter, and the percentages of nutrients (nitrogen, phosphorous, potassium, calcium, magnesium and iron) that were obtained in the dry matter, with the types and amounts of wastes applied. An increase in the average production of both fresh- and dry-matter with increasing amounts of either pulp or peel wastes applied, and high positive correlation coefficients between the average percentages of nitrogen, phosphorus and potassium obtained in the dry matter with the average production of both fresh- and dry-matter were found. No phytotoxicity was observed.