Publications

Export 4 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U [V] W X Y Z   [Show ALL]
V
Vicente, António T., Andreia Araújo, Diana Gaspar, Lídia Santos, Ana C. Marques, Manuel J. Mendes, LuÍs Pereira, Elvira Fortunato, and Rodrigo Martins. "{Optoelectronics and Bio Devices on Paper Powered by Solar Cells}." Nanostructured Solar Cells. InTech, 2017. Abstract

The employment of printing techniques as cost-effective methods to fabricate low cost, flexible, disposable and sustainable solar cells is intimately dependent on the substrate properties and the adequate electronic devices to be powered by them. Among such devices, there is currently a growing interest in the development of user-oriented and multipurpose systems for intelligent packaging or on-site medical diagnostics, which would greatly benefit from printable solar cells as their energy source for autonomous operation. This chapter first describes and analyzes different types of cellulose-based substrates for flexible and cost effective optoelectronic and bio devices to be powered by printed solar cells. Cellulose is one of the most promising platforms for green recyclable electronics and it is fully compatible with large-scale printing techniques, although some critical requirements must be addressed. Paper substrates exist in many forms. From common office paper, to packaging cardboard used in the food industry, or nanoscale engineered cellulose (e.g. bacterial cellulose). However, it is the structure and content of paper that determines its end use. Secondly, proof-of-concept of optoelectronic and bio devices pro-duced by inkjet printing are described and show the usefulness of solar cells as a power source or as a chemical reaction initiator for sensors.

Vicente, A. T., PJ Wojcik, MJ Mendes, H. Águas, E. Fortunato, and R. Martins. "{A statistics modeling approach for the optimization of thin film photovoltaic devices}." Solar Energy. 144 (2017). Abstract

© 2017 The growing interest in exploring thin film technologies to produce low cost devices such as n-i-p silicon solar cells, with outstanding performances and capability to address the highly relevant energy market, turns the optimization of their fabrication process a key area of development. The usual one-dimensional analysis of the involved parameters makes it difficult and time consuming to find the optimal set of conditions. To overcome these difficulties, the combination of experimental design and statistical analysis provides the tools to explore in a multidimensional fashion the interactions between fabrication parameters and expected experimental outputs. Design of Experiment and Multivariate Analysis are demonstrated here for the optimization of: (1) the low temperature deposition (150 °C) of high quality intrinsic amorphous silicon (i-a-Si:H); and (2) the matching of the n-, i-, and p-silicon layers thickness to maximize the efficiency of thin film solar cells. The multiple regression method applied, validated through analysis of variance and evaluated against exact numerical simulations, is shown to predict the overall intrinsic layer properties and the devices performance. The results confirm that experimental design and statistical data analysis are effective approaches to improve, within a minimum time frame and high certainty, the properties of silicon thin films, and subsequently the layer structure of solar cells.

Vicente, Antonio, Hugo Aguas, Tiago Mateus, Andreia Araujo, Andriy Lyubchyk, Simo Siitonen, Elvira Fortunato, and Rodrigo Martins. "{Solar cells for self-sustainable intelligent packaging}." Journal of Materials Chemistry A. 3 (2015): 13226-13236. AbstractWebsite

Nowadays there is a strong demand for intelligent packaging to provide comfort, welfare and security to owners, vendors and consumers by allowing them to know the contents and interact with the goods. This is of particular relevance for low cost, fully disposable and recyclable products, such as identification tags and medical diagnostic tests, and devices for analysis and/or quality control in food and pharmaceutical industries. However, the increase of complexity and processing capacity requires continuous power and can be addressed by the combined use of a small disposable battery, charged by a disposable solar cell, which is able to work under indoor lighting. Herein, we show a proof-of-concept of the pioneering production of thin-film amorphous silicon (a-Si:H) solar cells with an efficiency of 4{%} by plasma enhanced chemical vapour deposition (PECVD) on liquid packaging cardboard (LPC), which is commonly used in the food and beverage industries. Such accomplishment put us one step closer to this revolution by providing a flexible, renewable and extremely cheap autonomous energy packaging system. Moreover, such Si thin films take advantage of their good performance at low-light levels, which also makes them highly desirable for cheap mobile indoor applications.

Vieira, F., B. Sarmento, A. S. Reis-Machado, J. Facão, M. J. Carvalho, MJ Mendes, E. Fortunato, and R. Martins. "{Prediction of sunlight-driven CO2 conversion: Producing methane from photovoltaics, and full system design for single-house application}." Materials Today Energy. 14 (2019). Abstract

CO2 capture and utilization (CCU) technologies are being immensely researched as means to close the anthropogenic carbon cycle. One approach known as artificial photosynthesis uses solar energy from photovoltaics (PV), carbon dioxide and water to generate hydrocarbon fuels, being methane (CH4) a preferential target due to the already in place infrastructures for its storage, distribution and consumption. Here, a model is developed to simulate a direct (1-step) solar methane production approach, which is studied in two scenarios: first, we compare it against a more conventional 2-step methane production route, and second, we apply it to address the energetic needs of concept buildings with usual space and domestic hot water heating requirements. The analysed 2-step process consists in the PV-powered synthesis of an intermediate fuel – syngas – followed by its conversion to CH4 via a Fischer–Tropsch (methanation) process. It was found that the 1-step route could be adequate to a domestic, small scale use, potentially providing energy for a single-family house, whilst the 2-step can be used in both small and large scale applications, from domestic to industrial uses. In terms of overall solar-to-CH4 energy efficiency, the 2-step method reaches 13.26{%} against the 9.18{%} reached by the 1-step method. Next, the application of the direct solar methane technology is analysed for domestic buildings, in different European locations, equipped with a combination of solar thermal collectors (STCs) and PV panels, in which the heating needs that cannot be fulfilled by the STCs are satisfied by the combustion of methane synthesized by the PV-powered electrolyzers. Various combinations of situations for a whole year were studied and it was found that this auxiliary system can produce, per m2 of PV area, in the worst case scenario 23.6 g/day (0.328 kWh/day) of methane in Stockholm, and in the best case scenario 47.4 g/day (0.658 kWh/day) in Lisbon.