Publications

Export 12 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Pinheiro, A., A. Ruivo, J. Rocha, M. Ferro, JV Pinto, J. Deuermeier, T. Mateus, A. Santa, MJ Mendes, R. Martins, S. Gago, C. A. T. Laia, and H. Águas. "Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics." Nanomaterials. 13 (2023). AbstractWebsite
n/a
2021
Grey, P., M. Chapa, M. Alexandre, T. Mateus, E. Fortunato, R. Martins, MJ Mendes, and L. Pereira. "Combining Soft with Hard Condensed Matter for Circular Polarized Light Sensing and Logic Operations." Advanced Optical Materials. 9 (2021). AbstractWebsite
n/a
Alishah, H. M., F. P. G. Choi, U. D. Menda, C. Kahveci, M. C. Rodop, MJ Mendes, and S. Gunes. "Effect of Bathocuproine Concentration on the Photovoltaic Performance of NiOx-Based Perovskite Solar Cells." Journal of the Mexican Chemical Society. 65 (2021): 149-160. AbstractWebsite
n/a
2018
Martins, R., D. Gaspar, MJ Mendes, L. Pereira, J. Martins, P. Bahubalindruni, P. Barquinha, and E. Fortunato. "{Papertronics: Multigate paper transistor for multifunction applications}." Applied Materials Today. 12 (2018). Abstract

© 2018 The Authors The use of disposable recyclable, eco-friendly, sustainable and low-cost devices with multiple functions is becoming a demand in the emerging area of the Internet of Things as a way to decrease the degree of complexity of the electronic circuits required to serve a plethora of applications. Moreover, for low-cost disposable applications, it is relevant the systems to be recyclable. The idea beyond the present study concerns to exploit our imagination with simple questions such as: What happens if it is possible to have a simple and universal device architecture, easy to implement on paper substrates, but capable to provide different multiple functionalities? It would be possible to have a common template for electronic systems on paper that would be then easily customized depending on the final application? The present study answers to these demands by reporting the physics and electronics behavior of a multigate paper transistor where paper is simultaneously the substrate and the dielectric, while a metal-oxide-semiconductor (IGZO) is used as the active channel. Moreover, the same device is able to present logic functionalities simply by varying the amplitude and frequency of the input gate signals. These transistors operate at drain voltages of 1 V with low power, exhibiting ION/IOFF{\textgreater} 104and a mobility ≈2 cm2V−1s−1, serving the specifications for a broad range of smart disposable low power electronics. To sustain all this, an analytical compact model was developed able to precisely reproduce the response of paper-based dual-gate FETs and provide full understanding of their unique and innovative operational characteristics.

2017
Vicente, António T., Andreia Araújo, Diana Gaspar, Lídia Santos, Ana C. Marques, Manuel J. Mendes, LuÍs Pereira, Elvira Fortunato, and Rodrigo Martins. "{Optoelectronics and Bio Devices on Paper Powered by Solar Cells}." Nanostructured Solar Cells. InTech, 2017. Abstract

The employment of printing techniques as cost-effective methods to fabricate low cost, flexible, disposable and sustainable solar cells is intimately dependent on the substrate properties and the adequate electronic devices to be powered by them. Among such devices, there is currently a growing interest in the development of user-oriented and multipurpose systems for intelligent packaging or on-site medical diagnostics, which would greatly benefit from printable solar cells as their energy source for autonomous operation. This chapter first describes and analyzes different types of cellulose-based substrates for flexible and cost effective optoelectronic and bio devices to be powered by printed solar cells. Cellulose is one of the most promising platforms for green recyclable electronics and it is fully compatible with large-scale printing techniques, although some critical requirements must be addressed. Paper substrates exist in many forms. From common office paper, to packaging cardboard used in the food industry, or nanoscale engineered cellulose (e.g. bacterial cellulose). However, it is the structure and content of paper that determines its end use. Secondly, proof-of-concept of optoelectronic and bio devices pro-duced by inkjet printing are described and show the usefulness of solar cells as a power source or as a chemical reaction initiator for sensors.

2016
Morawiec, S., J. Holovský, MJ Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, and I. Crupi. "{Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application}." Scientific Reports (2016). AbstractWebsite
n/a
2015
Tobias, I., MJ Mendes, A. Boronat, E. Lopez, P. Garcia-Linares, I. Artacho, A. Marti, S. Silvestre, and A. Luque. "{HIT intermediate-band solar cells with self-assembled colloidal quantum dots and metal nanoparticles}." 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015. 2015. Abstract
n/a
Águas, Hugo, Tiago Mateus, António Vicente, Diana Gaspar, Manuel J. Mendes, Wolfgang A. Schmidt, LuÍs Pereira, Elvira Fortunato, and Rodrigo Martins. "{Thin Film Silicon Photovoltaic Cells on Paper for Flexible Indoor Applications}." Advanced Functional Materials. 25 (2015): 3592-3598. AbstractWebsite

The present development of non-wafer-based photovoltaics (PV) allows supporting thin film solar cells on a wide variety of low-cost recyclable and flexible substrates such as paper, thereby extending PV to a broad range of consumer-oriented disposable applications where autonomous energy harvesting is a bottleneck issue. However, their fibrous structure makes it challenging to fabricate good-performing inorganic PV devices on such substrates. The advances presented here demonstrate the viability of fabricating thin film silicon PV cells on paper coated with a hydrophilic mesoporous layer. Such layer can not only withstand the cells production temperature (150 °C), but also provide adequate paper sealing and surface finishing for the cell's layers deposition. The substances released from the paper substrate are continuously monitored during the cell deposition by mass spectrometry, which allows adapting the procedures to mitigate any contamination from the substrate. In this way, a proof-of-concept solar cell with 3.4{%} cell efficiency (41{%} fill factor, 0.82 V open-circuit voltage and 10.2 mA cm−2 short-circuit current density) is attained, opening the door to the use of paper as a reliable substrate to fabricate inorganic PV cells for a plethora of indoor applications with tremendous impact in multi-sectorial fields such as food, pharmacy and security.

2014
Gaspar, D., AC Pimentel, MJ Mendes, T. Mateus, BP Falcão, JP Leitão, J. Soares, A. Araújo, A. Vicente, SA Filonovich, H. Águas, R. Martins, and I. Ferreira. "{Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films}." Plasmonics. 9 (2014): 1015-1023. AbstractWebsite
n/a
2013
Mendes, Manuel J., Estela Hernández, Esther López, Pablo García-Linares, Iñigo Ramiro, Irene Artacho, Elisa Antolín, Ignacio Tobías, Antonio Martí, and Antonio Luque. "{Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells}." Nanotechnology. 24 (2013): 345402. AbstractWebsite

A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude. In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance. The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.

Martí, Antonio, Elisa Antolín, Pablo {García Linares}, Iñigo Ramiro, Irene Artacho, Esther López, Estela Hernández, Manuel J. Mendes, Alex Mellor, Ignacio Tobías, David {Fuertes Marrón}, Cesar Tablero, Ana B. Cristóbal, Christopher G. Bailey, Maria Gonzalez, Michael Yakes, Mathew P. Lumb, Robert Walters, and Antonio Luque. "{Six not-so-easy pieces in intermediate band solar cell research}." Journal of Photonics for Energy. 3 (2013): 31299. AbstractWebsite

Abstract.  The concept of intermediate band solar cell (IBSC) is, apparently, simple to grasp. However, since the idea was proposed, our understanding has improved and some concepts can now be explained more clearly than when the concept was initially introduced. Clarifying these concepts is important, even if they are well known for the advanced researcher, so that research efforts can be driven in the right direction from the start. The six pieces of this work are: Does a miniband need to be formed when the IBSC is implemented with quantum dots? What are the problems for each of the main practical approaches that exist today? What are the simplest experimental techniques to demonstrate whether an IBSC is working as such or not? What is the issue with the absorption coefficient overlap and the Mott's transition? What would the best system be, if any?

2006
Guedes, A., MJ Mendes, P. P. Freitas, and J. L. Martins. "{Study of synthetic ferrimagnet-synthetic antiferromagnet structures for magnetic sensor application}." Journal of Applied Physics (2006). AbstractWebsite
n/a