THE INVISCID LIMIT FOR SLIP BOUNDARY CONDITIONS

Citation:
Chemetov, Nikolai, and Fernanda Cipriano. "THE INVISCID LIMIT FOR SLIP BOUNDARY CONDITIONS." HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS. Eds. F. Ancona, A. Bressan, P. Marcati, and A. Marson. Vol. 8. {AIMS Series on Applied Mathematics}, 8. PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA: Univ Padova, Dipartimento Matematica; Univ Studi Aquila, Dipartimento Matematica Pura Applicata; Univ Padova; Univ Zurich; Univ Basel, 2014. 431-438.

Abstract:

We study the inviscid limit for the two dimensional Navier-Stokes equations with non-homogeneous Navier slip boundary condition. We show that the vanishing viscosity limit of Navier-Stokes's solutions verifies the Euler equations with the corresponding Navier slip boundary condition just on the inflow boundary. The convergence result is established with respect to the strong topology of the Sobolev spaces W-p(1), p > 2.

Notes:

14th International Conference devoted to Theory, Numerics and Applications of Hyperbolic Problems (HYP), Padova, ITALY, JUN 24-29, 2012