Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
Chemetov, N. V., F. Cipriano, and S. Gavrilyuk. "Shallow water model for lakes with friction and penetration." MATHEMATICAL METHODS IN THE APPLIED SCIENCES. 33 (2010): 687-703. Abstract

{We deduce a shallow water model, describing the motion of the fluid in a lake, assuming inflow-outflow effects across the bottom. This model arises from the asymptotic analysis of the 3D dimensional Navier-Stokes equations. We prove the global in time existence result for this model in a bounded domain taking the nonlinear slip/friction boundary conditions to describe the inflows and outflows of the porous coast and the rivers. The solvability is shown in the class of solutions with L(p)-bounded vorticity for any given p is an element of (1, infinity). Copyright (C) 2009 John Wiley & Sons, Ltd.}

Cipriano, Fernanda, Soumaya Gheryani, and Habib Ouerdiane. "The Gibbs conditioning principle for white noise distributions: interacting and non-interacting cases." Quantum probability and infinite dimensional analysis. Proceedings of the 29th conference, Hammamet, Tunisia, October 13–18, 2008. Hackensack, NJ: World Scientific, 2010. 55-70. Abstract

n/a

2008
Chaari, S., F. Cipriano, Soumaya Gheryani, and H. Ouerdiane. "Sanov's Theorem for White Noise Distributions and Application to the Gibbs Conditioning Principle." ACTA APPLICANDAE MATHEMATICAE. 104 (2008): 313-324. Abstract

{We consider a positive distribution Phi such that Phi defines a probability measure mu = mu Phi on the dual of some real nuclear Frechet space. A large deviation principle is proved for the family \{mu(n), n >= 1\} where mu(n) denotes the image measure of the product measure mu(n)(Phi) under the empirical distribution function L(n). Here the rate function I is defined on the space F(theta)'(N')(+) and agrees with the relative entropy function (H) over tilde (Psi/Phi). As an application, we cite the Gibbs conditioning principle which describes the limiting behaviour as n tends to infinity of the law of k tagged particles Y(1),...,Y(k) under the constraint that L(n)(Y) belongs to some subset A(0).}