Publications

Export 114 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Lanca, M. C., E. R. Neagu, J. N. Marat-Mendes, and Ieee, Comparative study of space charge in aged low-density polyethylene and crosslinked polyethylene, , pp. 209-212, 2004. AbstractWebsite

Polyethylene is one of the most widely used polymeric insulators in medium and high voltage power cables. However the importance of space charge distribution and its influence on the electrical aging in this polymer is not fully understood. The very good insulating properties of the material implying very long relaxation times (few days and even longer are usual) and low currents (few pA or below) make individual measurements of isothermal charge/discharge currents and thermostimulated currents difficult to analyze and reproduce. A single type of measurements does not take into account the space charge that remains trapped for long times. A combined procedure of isothermal and non-isothermal current measurements developed for high insulating polymers was used for low density polyethylene (LDPE) and crosslinked polyethylene (XLPE) films electrically aged. The press-molded LDPE and XLPE films were electrically aged under similar conditions using an AC electric field while immersed in a sodium chloride aqueous solution at constant temperature (electro-thermal aging). The use of the combined procedure for current measurement allowed obtaining information about space charge traps, activation energies and relaxation times for both LDPE and XLPE. This data was used to compare electrical aging under similar conditions for the two types of polyethylene.

Lanca, M. C., C. J. Dias, D. K. Dasgupta, J. Marat-Mendes, and I. Ieee, Comparative study of dielectric relaxation spectra of electrically and thermally aged low density polyethylene, , pp. 161-164, 2003. AbstractWebsite

Low-density polyethylene (LDPE) films were thermally aged in a sodium chloride aqueous solution at constant temperature (thermal aging). Some of the samples were simultaneously immersed in solution and subjected to an electric AC field (electrical aging). The dielectric relaxation spectra at 30 degreesC in the range of 10(-5) Hz to 10(5) Hz were obtained for unaged and aged samples. For the low frequency (LF) region (10(-5) Hz to 10(-1) Hz) the time domain technique was used. A lock-in amplifier was used for the 10(-1) Hz to 10(1) Hz medium frequency (MF) region. While for the high frequency (HF), 10(-1) Hz to 10(5) Hz, RLC bridge measurements were performed. The main differences can be seen between electrically, thermally aged and unaged LDPE in the HF and LF regions. The LF peak is a broad peak related to localized space charge injection driven by the electric field. For electrically aged samples this peak increases in an earlier stage of electrical aging, decreasing afterwards. While in thermally aged samples the peak amplitude always increases with aging time. Finally the HF shows the beginning of a peak due to the gamma and beta transitions. This peak decreases with aging disappearing for the most aged samples.

Lanca, M. C., W. Wirges, E. R. Neagu, R. Gerhard, and J. Marat-Mendes, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, no. 47-51, pp. 4501-4505, 2007. AbstractWebsite

Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)). (c) 2007 Elsevier B.V. All rights reserved.

Lanca, M. C., J. N. Marat-Mendes, and L. A. Dissado, "The fractal analysis of water trees - An estimate of the fractal dimension", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 8, no. 5, pp. 838-844, 2001. AbstractWebsite

Water trees result from ac electrical aging of the polymeric insulation of medium and HV power cables in a humid or wet environment. As suggested by their name, they arise from penetration of water in the polymer. Visual observation with the help of an optical microscope shows tree (bush) type structures. This suggests that water trees might be fractal objects. Calculation of the fractal dimension from experimental samples may confirm the fractal characteristics and also give information on the damage caused to the polymer. In this work images of water trees taken under the optical microscope, dyed by methylene blue and etched for scanning electron microscopy (SEM), were studied in order to estimate the fractal dimension using a box-counting algorithm. The photographs, made using an optical microscope (scale of 100 mum), of the dyed samples were obtained from laboratory-aged low-density polyethylene (LDPE) specimens using accelerated techniques. Different field amplitude and frequency and also time of aging were used and the dimension values were compared. SEM images resulting from aged cross-linked polyethylene (XLPE) cables revealed a structure at a different scale (similar to 3 mum). Each photograph was analyzed to compare regions with and without water trees.

Lanca, M. C., M. Brandt, E. R. Neagu, C. J. Dias, and J. N. Marat-Mendes, "Dielectric spectra of natural cork and derivatives", Journal of Non-Crystalline Solids, vol. 356, no. 11-17, pp. 763-767, 2010. AbstractWebsite

Cork is a cellular biomaterial that has unique characteristics that make it suitable for many types of applications. Since it is also an electrical insulator, the study of its electrical and dielectric properties can lead to new interesting applications. The moisture present in cork and derivatives has a very important role on the dielectric properties. In this work a composite made of both recycled cork and TetraPak (R) used containers was studied and compared with other cork products. The dielectric relaxation spectra of natural cork (as received), commercial cork agglomerate and of a composite cork/Tetrapak (R) was investigated in the temperature range of -50 to 120 degrees C and in the frequency range of 10(-1) Hz-2 MHz. For some samples of the composite a small amount of paraffin was added. The highest values for the imaginary part of the dielectric permittivity were found for the commercial material and the composite without paraffin. The lowest was found for the cork/TetraPak (R)/paraffin composite. The influence of humidity content was investigated for the composite with wax. Natural cork shows a peak around 80 degrees C (not seen in the derivative materials). The commercial agglomerate and the cork/TetraPak (R)/paraffin composite show a peak around 40-50 degrees C. In the composite this peak becomes smaller as humidity is removed. (C) 2009 Elsevier B.V. All rights reserved.

Lanca, M. C., E. R. Neagu, P. Silva, L. Gil, and J. Marat-Mendes, "Study of electrical properties of natural cork and two derivative products", Advanced Materials Forum Iii, Pts 1 and 2, vol. 514-516, pp. 940-944, 2006. Abstract

Electrical properties of natural cork, commercial cork agglomerates (for floor and wall coverings) and a recently developed composite of cork/TetraPak (R) were studied. Measurements of isothermal charge and discharge currents were made for natural cork samples in different directions (axial, radial and tangential cuts). The isothermal current characteristics and the samples conductivity were investigated under different conditions (electric field, temperature and environmental conditions: in air at ambient relative humidity (RH), dry air and vacuum), also the samples could be or not conditioned (dried in vacuum or in a P2O5 atmosphere at room temperature). From these results the influence of water on the electrical properties of natural cork could be seen. In order to compare the three different cork materials a preliminary study was made. Isothermal charge and discharge currents and conductivity after 1h charging were measured and compared for different electric fields and temperature in air at ambient RH.

Lanca, M. C.;Neagu, E. R.;Marat-Mendes, and J. N., Studies of space charge in electrically aged low density polyethylene, , pp. 19-22, Jan, 2002. Abstract
n/a
Lanca, M. C., J. Domingues, and I. Franco, Study of fractal properties in Lichtenberg figures, , pp. 133-144, 1995. AbstractWebsite
n/a
Lanca, M. C., E. R. Neagu, and J. N. Marat-Mendes, "Space charge studies of aged XLPE using combined isothermal and thermostimulated current measurements", Cross-Disciplinary Applied Research in Materials Science and Technology, vol. 480, pp. 501-505, 2005. Abstract

Space charge in electrically aged cross-linked polyethylene (XLPE) was studied using a procedure combining isothermal and non-isothermal measurements of charge and discharge currents. Aging is carried out using an AC field while immersing the disk-shaped samples in an ionic aqueous solution at constant temperature. After aging the samples were isothermally DC charged and discharged. Next a non-isothermal experiment with constant heating rate was performed (FTSDC). Finally the sample was kept at the highest temperature in order to completely discharge the polymer. The space charge introduced in the XLPE during aging can be analyzed from the study of the FTSDC spectra. The thermogram (FTSDC) shows a very broad peak. The peak is attributed to trapped space charge in traps with long relaxation times. It is possible to decompose it into three or four individual peaks and obtain the corresponding activation energies. The results were compared with previous ones obtained for LDPE (low density polyethylene) aged under similar conditions.

Lanca, M. C., E. R. Neagu, L. A. Dissado, and J. Marat-Mendes, "Space charge studies in XLPE from power cables using combined isothermal ans thermostimulated current measurements", Advanced Materials Forum Iii, Pts 1 and 2, vol. 514-516, pp. 935-939, 2006. Abstract

Cross-linked polyethylene (XLPE) peelings from aged power cables from three different sources were studied using a combined procedure of isothermal and thermo-stimulated current measurements. Different parameters, such as electric field, temperature, charging/discharging times, can be selected in order to make an analysis of the space charge characteristics (such as, relaxation times and activation energies). Three different cables peelings were analyzed: A - electrically aged in the laboratory at high temperature, B - service aged for 18 years and C - thermally aged in the laboratory at high temperature. The results were compared for the different types of samples and also with previous results on laboratory aged and produced films of low-density polyethylene (LDPE) and XLPE.

M
M.C., L. A. N. Ç. A., N. E. A. G. U. E.R., D. I. A. S. C.J., G. I. L. L., and M. A. R. A. T. - M. E. N. D. E. S. J.N., Electrical properties of cork and derivatives, , vol. 23, issue 3/4, 2011. Abstract
n/a
M.C., L. A. N. Ç. A., N. E. A. G. U. E.R., D. I. A. S. C.J., G. I. L. L., and M. A. R. A. T. - M. E. N. D. E. S. J.N., Electrical properties of cork and derivatives, , vol. 23, pp. 64-70, Jan, 2011. Abstract
n/a
M.C., L., C. I., M. J. Paulo, G. I. L. L., N. E. A. G. U. E.R., D. I. A. S. C.J., and M. - M. J. N., Water Content Control to Improve Space Charge Storage in a Cork Derivative, , vol. 730-732, pp. 395-400, 2012. Abstract
n/a
Madeira, R. M. D., T. Vieira, J. C. Silva, I. R. Oliveira, J. P. Borges, M. M. R. A. Lima, and C. M. Lança, "Piezoelectric Calcium Modified Barium Titanate for Bone Regeneration", Materials Proceedings 2022, Vol. 8, Page 121, vol. 8, no. 1, Basel Switzerland, Multidisciplinary Digital Publishing Institute, pp. 121, jul, 2022. Abstract

Solid state reaction was used to produced barium titanate modified with calcium (BCT) showing the presence of the piezoelectric tetragonal phase after sintering at 1350 °C. Bioglass 45S5 (BG) was synthetized by sol-gel route. From these two materials and commercial hydroxyapatite (HAp) were obtained composites. The BG produced showed some cytotoxic character that was weakened by passivation. All other materials were non-cytotoxic. Contact polarization at constant temperature was chosen composites polarization. Electric/dielectric properties were evaluated by thermally stimulated depolarization currents (TSDC). The material showed bioactivity with the composite with BCT/BG/HAp 90/5/5 (wt%) showing increased bioactivity. In vitro test showed high proliferation rates for the composites.

Mateo, J., M. C. Lanca, and J. Marat-Mendes, "Infrared spectroscopy studies of aged polymeric insulators", Advanced Materials Forum I, vol. 230-2, pp. 384-387, 2002. Abstract

Thin films of low density polyethylene (LDPE) and crosslinked polyethylene (XLPE) were aged under an AC electric field while kept in sodium chloride aqueous solution. After aging the samples showed water trees (localized damaged with the appearance of hydrophilic ramified structures whose size ranges from a few microns to I mm). Some of the samples suffered dielectric breakdown showing small channels (1-2 mm. diameter) crossing the film and sometimes also signs of carbonization. In order to identify the oxidation mechanisms contributing to aging, FTIR was used to analyze both unaged and aged specimens. Comparing between unaged and aged LDPE an increase in the FTIR spectrum for bands at 1720 cm(-1), 1640 cm(-1) and 1590 cm(-1) was visible for the aged samples. The first region corresponds to carbonyl groups (C=O bonds) resulting from oxidation (most probably ketones). While the second one is related to carbon double bonds formed due to chain scission. Finally the third one is due to carboxylates. For the XLPE the analysis is more difficult. Besides aging it needs to be taken into account the by-products of crosslinking that will tend also to diffuse out with time. The main effect of aging is an increase in the concentration of 1640 cm(-1) band (C=C bonds). For the water treed regions dry and wet samples were compared. In the wet ones the absorbance is larger for the 3380 cm(-1) exhibiting, as expected, water absorption in the water treed regions (hydrophilic characteristics were increased).

Mateo, J., M. C. Lanca, and J. Marat-Mendes, "Infrared spectroscopy studies of aged polymeric insulators", Advanced Materials Forum I, vol. 230-2, pp. 384-387, 2002. Abstract

Thin films of low density polyethylene (LDPE) and crosslinked polyethylene (XLPE) were aged under an AC electric field while kept in sodium chloride aqueous solution. After aging the samples showed water trees (localized damaged with the appearance of hydrophilic ramified structures whose size ranges from a few microns to I mm). Some of the samples suffered dielectric breakdown showing small channels (1-2 mm. diameter) crossing the film and sometimes also signs of carbonization. In order to identify the oxidation mechanisms contributing to aging, FTIR was used to analyze both unaged and aged specimens. Comparing between unaged and aged LDPE an increase in the FTIR spectrum for bands at 1720 cm(-1), 1640 cm(-1) and 1590 cm(-1) was visible for the aged samples. The first region corresponds to carbonyl groups (C=O bonds) resulting from oxidation (most probably ketones). While the second one is related to carbon double bonds formed due to chain scission. Finally the third one is due to carboxylates. For the XLPE the analysis is more difficult. Besides aging it needs to be taken into account the by-products of crosslinking that will tend also to diffuse out with time. The main effect of aging is an increase in the concentration of 1640 cm(-1) band (C=C bonds). For the water treed regions dry and wet samples were compared. In the wet ones the absorbance is larger for the 3380 cm(-1) exhibiting, as expected, water absorption in the water treed regions (hydrophilic characteristics were increased).

MC, L., W. W, N. ER, G. R, and M. - M. S. J, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, pp. 4501-4505, Jan, 2007. AbstractWebsite
n/a
MC, L., M. - M. JN, and D. LA, "The fractal analysis of water trees - An estimate of the fractal dimension", IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 8: Univ Nova Lisboa, Univ Leicester, pp. 838-844, Jan, 2001. Abstract
n/a
MC, L., N. ER, and M. - M. JN, "Space charge studies of aged XLPE using combined isothermal and thermostimulated current measurements", Cross-Disciplinary Applied Research in Materials Science and Technology, vol. 480-481, no. 480, pp. 501-505, Jan, 2005. Abstract
n/a
MC, L., N. ER, and M. - M. JN, "Combined isothermal and non-isothermal current measurements applied to space charge studies in low-density polyethylene", Journal of Physics D-Applied Physics, vol. 35, pp. L29-L32, Jan, 2002. Abstract
n/a
MC, L., F. M, N. E, D. LA, M. - M. S. J, T. A, and Z. S, "Space charge analysis of electrothermally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007. AbstractWebsite

Cross-linked polyethylene (XLPE) is currently widely used as an insulating material for power cables due to its good physical properties, however when in use it undergoes an electrical ageing process. Its ability to trap electric charge can give rise to space charge accumulation in the bulk of the polymer and produce localised electric stresses that can lead to cable failure, since the electric field will be increased above the design stress in some regions favouring the initiation of degradation there. In this work the PEA (pulsed electro-acoustic) method was used to compare the charge dynamics in three samples (XLPE cable peelings) aged in different ways (electrothermally in the laboratory, field aged in service and thermally aged in the laboratory). Very different transient behavior was found depending upon the ageing history. This is related to differences in the migration of chemical species in the insulation layer, which are known to act as charge traps. All materials showed heterocharge peaks when the space charge reached stability, the magnitude of which seems to be related to the severity of the ageing.

MC, L., N. ER, N. RM, D. CJ, M. - M. JN, and D. - G. DK, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 11: Univ Wales, Univ Nova Lisboa, pp. 25-34, Jan, 2004. Abstract
n/a
MC, L., N. ER, D. LA, and M. - M. S. J, "Space charge studies in XLPE from power cables using combined isothermal and thermostimulated current measurements", Advanced Materials Forum Iii, Pts 1 and 2, vol. 514-516, no. 514-516, pp. 935-939, Jan, 2006. Abstract
n/a
MC, L., P. S, N. ER, G. L, S. PC, and M. - M. S. J, "Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite", Advanced Materials Forum Iv, vol. 587-588, no. 587-588, pp. 613-617, Jan, 2008. Abstract
n/a
MC, L., W. W, N. ER, G. R, and M. - M. S. J, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007. AbstractWebsite

Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)).