Publications

Export 114 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Lanca, M. C.;Neagu, E. R.;Marat-Mendes, and J. N., Studies of space charge in electrically aged low density polyethylene, , pp. 19-22, Jan, 2002. Abstract
n/a
Lanca, M. C., E. R. Neagu, L. A. Dissado, and J. Marat-Mendes, "Space charge studies in XLPE from power cables using combined isothermal ans thermostimulated current measurements", Advanced Materials Forum Iii, Pts 1 and 2, vol. 514-516, pp. 935-939, 2006. Abstract

Cross-linked polyethylene (XLPE) peelings from aged power cables from three different sources were studied using a combined procedure of isothermal and thermo-stimulated current measurements. Different parameters, such as electric field, temperature, charging/discharging times, can be selected in order to make an analysis of the space charge characteristics (such as, relaxation times and activation energies). Three different cables peelings were analyzed: A - electrically aged in the laboratory at high temperature, B - service aged for 18 years and C - thermally aged in the laboratory at high temperature. The results were compared for the different types of samples and also with previous results on laboratory aged and produced films of low-density polyethylene (LDPE) and XLPE.

Lanca, M. C., M. Fu, E. Neagu, L. A. Dissado, J. Marat-Mendes, A. Tzimas, and S. Zadeh, "Space charge analysis of electrotherinally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, no. 47-51, pp. 4462-4466, 2007. AbstractWebsite

Cross-linked polyethylene (XLPE) is currently widely used as an insulating material for power cables due to its good physical properties, however when in use it undergoes an electrical ageing process. Its ability to trap electric charge can give rise to space charge accumulation in the bulk of the polymer and produce localised electric stresses that can lead to cable failure, since the electric field will be increased above the design stress in some regions favouring the initiation of degradation there. In this work the PEA (pulsed electro-acoustic) method was used to compare the charge dynamics in three samples (XLPE cable peelings) aged in different ways (electrothermally in the laboratory, field aged in service and thermally aged in the laboratory). Very different transient behavior was found depending upon the ageing history. This is related to differences in the migration of chemical species in the insulation layer, which are known to act as charge traps. All materials showed heterocharge peaks when the space charge reached stability, the magnitude of which seems to be related to the severity of the ageing. (c) 2007 Elsevier B.V. All rights reserved.

Lanca, M. C., E. R. Neagu, R. M. Neagu, C. J. Dias, J. N. Marat-Mendes, and D. K. Das-Gupta, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", Ieee Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 1, pp. 25-34, 2004. AbstractWebsite

Using a recently developed procedure combining isothermal and non-isothermal current measurements space charge trapping and transport in LDPE was successfully studied. Unaged, thermally and electrically aged samples were investigated. The samples were conditioned before each measurement in order to obtain reproducible results. In the non-isothermal measurements appeared a broad peak (40degreesC to 50degreesC) that was possible to decompose into two or three peaks (35, 45 and 65degreesC). At even higher temperature another peak was sometimes present (85degreesC) depending on the prior sample conditioning. The space charge is trapped near the surface in deep traps (maximum depth of approximate to 15 mum). Relaxation times, mobilities and activation energies have been calculated for different charging/discharging conditions. For unaged samples the reproducibility of the results was poor while for the aged polyethylene it was quite good, meaning that aging helps conditioning. In the electrically aged LDPE there is a decrease of conductivity and the broad peak of the non-isothermal spectra shows a slight shift towards higher temperatures when compared with the data found in the thermally aged polymer.

Lanca, M. C., J. Domingues, and I. Franco, Study of fractal properties in Lichtenberg figures, , pp. 133-144, 1995. AbstractWebsite
n/a
Lanca, C. M., S. Peuckert, E. R. Neagu, L. Gil, P. C. Silva, and J. Marat-Mendes, "Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite", Advanced Materials Forum Iv, vol. 587-588, pp. 613-617, 2008. Abstract

Lately the electrical and dielectric properties of cork and some cork-based materials (commercial and non-commercial) have been studied in order to understand their ability to store electrical charge. The main problem found so far is related to the water content in cork, only of a few % weight. but large enough to influence greatly the conductivity of cork and, consequently, the charge storage capability. To overcome this problem cork has been combined with hydrophobic materials. In this work a commercial wax (paraffin wax) was used to produce a cork/paraffin composite by hot pressing. After milled and mixed natural cork. TetraPak (R) containers waste and paraffin were pressed to make plaques of a new composite. Different concentrations of cork. TetraPak (R) and paraffin, different granules sire, different temperature and pressure were used to produce the samples. The electrical properties of the new composite were measured by the isothermal charging and discharging current method and the results compared to previously ones obtained for natural cork and other derivative products. The new composite has shown to have lower conductivity than the commercial agglomerate. which makes it a better material for charge storage.

Lanca, M. C., E. R. Neagu, and J. N. Marat-Mendes, "Combined isothermal and non-isothermal current measurements applied to space charge studies in low-density polyethylene", Journal of Physics D-Applied Physics, vol. 35, no. 8, pp. L29-L32, 2002. AbstractWebsite

A new experimental procedure combining usual isothermal DC charging and discharging with non-isothermal current measurements has been recently proposed. It is mainly suitable for very high insulating polymers and it was successfully applied to the study of space charge trapping and transport in low-density polyethylene. The analysis of the isothermal currents revealed the presence of different traps whose characteristic (de)trapping times can be deduced. The isothermal procedures allowed the selective charging of the sample. By choosing the charging field and the ratio of charge/discharge times, non-isothermal analysis permitted the differentiation of three or four peaks (at approximate to50degreesC, approximate to65degreesC, approximate to70degreesC and approximate to85degreesC) associated with charge detrapping from surface or near-surface (<20 mum) traps. These traps have activation energies between 0.21 and 1.54 eV. The mobility at 30degreesC is around 5 x 10(-16) m(2) V-1 s(-1). Samples had to be conditioned before each experiment in order to obtain reproducible results.

Lanca, M. C., I. Cunha, J. P. Marques, E. R. Neagu, L. Gil, C. J. Dias, and J. N. Marat-Mendes, "Water Content Control To Improve Space Charge Storage in a Cork Derivative", Advanced Materials Forum Vi, Pts 1 and 2, vol. 730-732, pp. 395-400, 2013. Abstract
n/a
Lanca, M. C., S. Peuckert, E. R. Neagu, L. Gil, P. C. Silva, and J. Marat-Mendes, "Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite", Advanced Materials Forum Iv, vol. 587-588, pp. 613-617, 2008. Abstract

Lately the electrical and dielectric properties of cork and some cork-based materials (commercial and non-commercial) have been studied in order to understand their ability to store electrical charge. The main problem found so far is related to the water content in cork, only of a few % weight. but large enough to influence greatly the conductivity of cork and, consequently, the charge storage capability. To overcome this problem cork has been combined with hydrophobic materials. In this work a commercial wax (paraffin wax) was used to produce a cork/paraffin composite by hot pressing. After milled and mixed natural cork. TetraPak (R) containers waste and paraffin were pressed to make plaques of a new composite. Different concentrations of cork. TetraPak (R) and paraffin, different granules sire, different temperature and pressure were used to produce the samples. The electrical properties of the new composite were measured by the isothermal charging and discharging current method and the results compared to previously ones obtained for natural cork and other derivative products. The new composite has shown to have lower conductivity than the commercial agglomerate. which makes it a better material for charge storage.

Lança, C. M., E. R. Neagu, C. Dias, and J. Marat-Mendes, Dielectric spectra of natural cork and derivatives, , vol. 356, pp. 763-767, Jan, 2010. Abstract
n/a
M
M.C., L. A. N. Ç. A., N. E. A. G. U. E.R., D. I. A. S. C.J., G. I. L. L., and M. A. R. A. T. - M. E. N. D. E. S. J.N., Electrical properties of cork and derivatives, , vol. 23, issue 3/4, 2011. Abstract
n/a
M.C., L. A. N. Ç. A., N. E. A. G. U. E.R., D. I. A. S. C.J., G. I. L. L., and M. A. R. A. T. - M. E. N. D. E. S. J.N., Electrical properties of cork and derivatives, , vol. 23, pp. 64-70, Jan, 2011. Abstract
n/a
M.C., L., C. I., M. J. Paulo, G. I. L. L., N. E. A. G. U. E.R., D. I. A. S. C.J., and M. - M. J. N., Water Content Control to Improve Space Charge Storage in a Cork Derivative, , vol. 730-732, pp. 395-400, 2012. Abstract
n/a
Madeira, R. M. D., T. Vieira, J. C. Silva, I. R. Oliveira, J. P. Borges, M. M. R. A. Lima, and C. M. Lança, "Piezoelectric Calcium Modified Barium Titanate for Bone Regeneration", Materials Proceedings 2022, Vol. 8, Page 121, vol. 8, no. 1, Basel Switzerland, Multidisciplinary Digital Publishing Institute, pp. 121, jul, 2022. Abstract

Solid state reaction was used to produced barium titanate modified with calcium (BCT) showing the presence of the piezoelectric tetragonal phase after sintering at 1350 °C. Bioglass 45S5 (BG) was synthetized by sol-gel route. From these two materials and commercial hydroxyapatite (HAp) were obtained composites. The BG produced showed some cytotoxic character that was weakened by passivation. All other materials were non-cytotoxic. Contact polarization at constant temperature was chosen composites polarization. Electric/dielectric properties were evaluated by thermally stimulated depolarization currents (TSDC). The material showed bioactivity with the composite with BCT/BG/HAp 90/5/5 (wt%) showing increased bioactivity. In vitro test showed high proliferation rates for the composites.

Mateo, J., M. C. Lanca, and J. Marat-Mendes, "Infrared spectroscopy studies of aged polymeric insulators", Advanced Materials Forum I, vol. 230-2, pp. 384-387, 2002. Abstract

Thin films of low density polyethylene (LDPE) and crosslinked polyethylene (XLPE) were aged under an AC electric field while kept in sodium chloride aqueous solution. After aging the samples showed water trees (localized damaged with the appearance of hydrophilic ramified structures whose size ranges from a few microns to I mm). Some of the samples suffered dielectric breakdown showing small channels (1-2 mm. diameter) crossing the film and sometimes also signs of carbonization. In order to identify the oxidation mechanisms contributing to aging, FTIR was used to analyze both unaged and aged specimens. Comparing between unaged and aged LDPE an increase in the FTIR spectrum for bands at 1720 cm(-1), 1640 cm(-1) and 1590 cm(-1) was visible for the aged samples. The first region corresponds to carbonyl groups (C=O bonds) resulting from oxidation (most probably ketones). While the second one is related to carbon double bonds formed due to chain scission. Finally the third one is due to carboxylates. For the XLPE the analysis is more difficult. Besides aging it needs to be taken into account the by-products of crosslinking that will tend also to diffuse out with time. The main effect of aging is an increase in the concentration of 1640 cm(-1) band (C=C bonds). For the water treed regions dry and wet samples were compared. In the wet ones the absorbance is larger for the 3380 cm(-1) exhibiting, as expected, water absorption in the water treed regions (hydrophilic characteristics were increased).

Mateo, J., M. C. Lanca, and J. Marat-Mendes, "Infrared spectroscopy studies of aged polymeric insulators", Advanced Materials Forum I, vol. 230-2, pp. 384-387, 2002. Abstract

Thin films of low density polyethylene (LDPE) and crosslinked polyethylene (XLPE) were aged under an AC electric field while kept in sodium chloride aqueous solution. After aging the samples showed water trees (localized damaged with the appearance of hydrophilic ramified structures whose size ranges from a few microns to I mm). Some of the samples suffered dielectric breakdown showing small channels (1-2 mm. diameter) crossing the film and sometimes also signs of carbonization. In order to identify the oxidation mechanisms contributing to aging, FTIR was used to analyze both unaged and aged specimens. Comparing between unaged and aged LDPE an increase in the FTIR spectrum for bands at 1720 cm(-1), 1640 cm(-1) and 1590 cm(-1) was visible for the aged samples. The first region corresponds to carbonyl groups (C=O bonds) resulting from oxidation (most probably ketones). While the second one is related to carbon double bonds formed due to chain scission. Finally the third one is due to carboxylates. For the XLPE the analysis is more difficult. Besides aging it needs to be taken into account the by-products of crosslinking that will tend also to diffuse out with time. The main effect of aging is an increase in the concentration of 1640 cm(-1) band (C=C bonds). For the water treed regions dry and wet samples were compared. In the wet ones the absorbance is larger for the 3380 cm(-1) exhibiting, as expected, water absorption in the water treed regions (hydrophilic characteristics were increased).

MC, L., N. ER, and M. - M. JN, "Combined isothermal and non-isothermal current measurements applied to space charge studies in low-density polyethylene", Journal of Physics D-Applied Physics, vol. 35, pp. L29-L32, Jan, 2002. Abstract
n/a
MC, L., F. M, N. E, D. LA, M. - M. S. J, T. A, and Z. S, "Space charge analysis of electrothermally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007. AbstractWebsite

Cross-linked polyethylene (XLPE) is currently widely used as an insulating material for power cables due to its good physical properties, however when in use it undergoes an electrical ageing process. Its ability to trap electric charge can give rise to space charge accumulation in the bulk of the polymer and produce localised electric stresses that can lead to cable failure, since the electric field will be increased above the design stress in some regions favouring the initiation of degradation there. In this work the PEA (pulsed electro-acoustic) method was used to compare the charge dynamics in three samples (XLPE cable peelings) aged in different ways (electrothermally in the laboratory, field aged in service and thermally aged in the laboratory). Very different transient behavior was found depending upon the ageing history. This is related to differences in the migration of chemical species in the insulation layer, which are known to act as charge traps. All materials showed heterocharge peaks when the space charge reached stability, the magnitude of which seems to be related to the severity of the ageing.

MC, L., N. ER, N. RM, D. CJ, M. - M. JN, and D. - G. DK, "Space charge studies in LDPE using combined isothermal and non-isothermal current measurements", IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 11: Univ Wales, Univ Nova Lisboa, pp. 25-34, Jan, 2004. Abstract
n/a
MC, L., N. ER, D. LA, and M. - M. S. J, "Space charge studies in XLPE from power cables using combined isothermal and thermostimulated current measurements", Advanced Materials Forum Iii, Pts 1 and 2, vol. 514-516, no. 514-516, pp. 935-939, Jan, 2006. Abstract
n/a
MC, L., W. W, N. ER, G. R, and M. - M. S. J, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007. AbstractWebsite

Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)).

MC, L., P. S, N. ER, G. L, S. PC, and M. - M. S. J, "Electrical Properties Studies of a Cork/TetraPak (R)/Paraffin Wax Composite", Advanced Materials Forum Iv, vol. 587-588, no. 587-588, pp. 613-617, Jan, 2008. Abstract
n/a
MC, L., F. M, N. E, D. LA, M. - M. S. J, T. A, and Z. S, "Space charge analysis of electrothermally aged XLPE cable insulation", Journal of Non-Crystalline Solids, vol. 353, pp. 4462-4466, Jan, 2007. AbstractWebsite
n/a
MC, L., D. CJ, D. G. DK, and M. - M. S. J, "Dielectric properties of electrically aged low density polyethylene", Advanced Materials Forum I, vol. 230-2, no. 230-232, pp. 396-399, Jan, 2002. Abstract
n/a
MC, L., N. ER, S. P, G. L, and M. - M. S. J, "Study of electrical properties of natural cork and two derivative products", Advanced Materials Forum Iii, Pts 1 and 2, vol. 514-516, no. 514-516, pp. 940-944, Jan, 2006. Abstract
n/a