Publications

Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Dias, I. J. G. J. G., A. S. S. Pádua, E. Pires, J. P. M. R. Borges, J. C. Silva, and M. C. Lança, "TSDC and surface potential measurements of charged hydroxyapatite/BaTiO 3 biocoatings deposited by CoBlast", ISE19-19th Int Symp on Electrets, 18-22 Sept., Linz, Austria, Johannes Kepler Univ., pp. 77, 2023. Abstract

n/a

2017
Prezas, P. R., B. M. G. Melo, L. C. Costa, M. A. Valente, M. C. Lança, J. M. G. Ventura, L. F. V. Pinto, and M. P. F. Graça, "TSDC and impedance spectroscopy measurements on hydroxyapatite, β-tricalcium phosphate and hydroxyapatite/β-tricalcium phosphate biphasic bioceramics", Applied Surface Science, vol. 424, issue 1, pp. 28-38, 2017. Abstract

Bone grafting and surgical interventions related with orthopaedic disorders consist in a big business, generating large revenues worldwide every year. There is a need to replace the biomaterials that currently still dominate this market, i.e., autografts and allografts, due to their disadvantages, such as limited availability, need for additional surgeries and diseases transmission possibilities. The most promising replacement materials are biomaterials with bioactive properties, such as the calcium phosphate-based bioceramics group. The bioactivity of these materials, i.e., the rate at which they promote the growth and directly bond with the new host biological bone, can be enhanced through their electrical polarization.In the present work, the electrical polarization features of pure hydroxyapatite (Hap), pure β-tricalcium phosphate (β-TCP) and biphasic hydroxyapatite/β-tricalcium phosphate composites (HTCP) were analyzed by measuring thermally stimulated depolarization currents (TSDC). The samples were thermoelectrically polarized at 500. °C under a DC electric field with a magnitude of 5. kV/cm. The biphasic samples were also polarized under electric fields with different magnitudes: 2, 3, 4 and 5. kV/cm. Additionally, the depolarization processes detected in the TSDC measurements were correlated with dielectric relaxation processes observed in impedance spectroscopy (IS) measurements.The results indicate that the β-TCP crystalline phase has a considerable higher ability to store electrical charge compared with the Hap phase. This indicates that it has a suitable composition and structure for ionic conduction and establishment of a large electric charge density, providing great potential for orthopaedic applications.

2005
Neagu, E. R., R. M. Neagu, M. C. Lanca, and J. N. Marat-Mendes, The time as a parameter to investigate the landscape of the apparent activation energies in the final thermally stimulated discharge current measurements, , pp. 292-295, 2005. AbstractWebsite

The experimental results obtained in a wide range of temperatures, for polyethylene terephthalate, demonstrate that the apparent activation energy changes when the charging (polarization) time or the isothermal discharging time, prior to the final thermally stimulated discharge current measurement, are used as variable parameters. Consequently, the charging and/or discharging time can be used as a variable parameter to investigate the landscape of the apparent thermal activation energies. A continuous distribution of the traps in the range from 0.4 to 3 eV was observed. The experimental results demonstrate that there is a range of experimental conditions for which the thermal activation energy is independent of the experimental parameter values. This is the activation energy value which should be used to characterize a certain mechanism.

Neagu, E. R., R. M. Neagu, M. C. Lanca, and J. N. Marat-Mendes, "The time as a parameter to investigate the landscape of the apparent activation energies in the final thermally stimulated discharge current measurements", 12th International Symposium on Electrets (ISE 12), Proceedings, pp. 292-295, 2005. AbstractWebsite

The experimental results obtained in a wide range of temperatures, for polyethylene terephthalate, demonstrate that the apparent activation energy changes when the charging (polarization) time or the isothermal discharging time, prior to the final thermally stimulated discharge current measurement, are used as variable parameters. Consequently, the charging and/or discharging time can be used as a variable parameter to investigate the landscape of the apparent thermal activation energies. A continuous distribution of the traps in the range from 0.4 to 3 eV was observed. The experimental results demonstrate that there is a range of experimental conditions for which the thermal activation energy is independent of the experimental parameter values. This is the activation energy value which should be used to characterize a certain mechanism.