Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
de Oliveira, I. R., I. dos Santos Gonçalves, K. Wallace dos Santos, M. C. Lança, T. Vieira, J. C. Silva, I. F. Cengiz, R. L. Reis, J. M. Oliveira, and J. P. Miranda Ribeiro Borges, "Biocomposite Macrospheres Based on Strontium-Bioactive Glass for Application as Bone Fillers", ACS Materials Au, vol. 3, no. 6: American Chemical Society, pp. 646–658, 2023. AbstractWebsite

Traditional bioactive glass powders are typically composed of irregular particles that can be packed into dense configurations presenting low interconnectivity, which can limit bone ingrowth. The use of novel biocomposite sphere formulations comprising bioactive factors as bone fillers are most advantageous, as it simultaneously allows for packing the particles in a 3-dimensional manner to achieve an adequate interconnected porosity, enhanced biological performance, and ultimately a superior new bone formation. In this work, we develop and characterize novel biocomposite macrospheres of Sr-bioactive glass using sodium alginate, polylactic acid (PLA), and chitosan (CH) as encapsulating materials for finding applications as bone fillers. The biocomposite macrospheres that were obtained using PLA have a larger size distribution and higher porosity and an interconnectivity of 99.7%. Loose apatite particles were observed on the surface of macrospheres prepared with alginate and CH by means of soaking into a simulated body fluid (SBF) for 7 days. A dense apatite layer was formed on the biocomposite macrospheres' surface produced with PLA, which served to protect PLA from degradation. In vitro investigations demonstrated that biocomposite macrospheres had minimal cytotoxic effects on a human osteosarcoma cell line (SaOS-2 cells). However, the accelerated degradation of PLA due to the degradation of bioactive glass may account for the observed decrease in SaOS-2 cells viability. Among the biocomposite macrospheres, those composed of PLA exhibited the most promising characteristics for their potential use as fillers in bone tissue repair applications.

2007
MC, L., W. W, N. ER, G. R, and M. - M. S. J, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, pp. 4501-4505, Jan, 2007. AbstractWebsite
n/a
MC, L., W. W, N. ER, G. R, and M. - M. S. J, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, issue 47-51, 2007. AbstractWebsite

Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)).

Lanca, M. C., W. Wirges, E. R. Neagu, R. Gerhard, and J. Marat-Mendes, "Influence of humidity on the electrical charging properties of cork agglomerates", Journal of Non-Crystalline Solids, vol. 353, no. 47-51, pp. 4501-4505, 2007. AbstractWebsite

Cork is a natural cellular and electrically insulating material which may have the capacity to store electric charges on or in its cell walls. Since natural cork has many voids, it is difficult to obtain uniform samples with the required dimensions. Therefore, a more uniform material, namely commercial cork agglomerate, usually used for floor and wall coverings, is employed in the present study. Since we know from our previous work that the electrical properties of cork are drastically affected by absorbed and adsorbed water, samples were protected by means of different polymer coatings (applied by spin-coating or soaking). Corona charging and isothermal charging and discharging currents were used to study the electrical trapping and detrapping capabilities of the samples. A comparison of the results leads to the conclusion that the most promising method for storing electric charges in this cellular material consists of drying and coating or soaking with a hydrophobic, electrically insulating polymer such as polytetraflouroethylene (Teflon (R)). (c) 2007 Elsevier B.V. All rights reserved.