Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
A., P., L. A. N. Ç. A. M.C., B. J.P., N. E. A. G. U. E.R., D. I. A. S. C.J., Marat-Mendes, and J.N., "Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite", 14th International Symposium on Electrets, 2011. Abstract
n/a
A., P., L. A. N. Ç. A. M.C., B. J.P., N. E. A. G. U. E.R., D. I. A. S. C.J., Marat-Mendes, and J.N., Influence of Polarization on the Bioactivity of Nanopowders of Hydroxyapatite, , pp. 55-56, Jan, 2011. Abstract
n/a
AS, P., B. JPMR, N. E, M. - M. JN, and L. MCH, Electrical characterization of biphasic ceramics used in hard tissue replacement, , Coimbra Portugal, pp. 217, 2013. Abstract

Hydroxyapatite [Hap; Ca10(PO4)6(OH)2) and b-tricalcium phosphate [b-TCP; Ca3(PO4)2] are biocompatible calcium phosphates used in skeletal surgery. The natural HAp is one of the main components of bone and, as a synthetic material, has been widely used for bone replacement presenting good bioactivity. Nevertheless synthetic HAp presents a slow in vivo degradation rate which is disadvantageous for bone’s reparative process. b-TCP has also good osteogenic characteristics presenting the ability to form strong bonds with the bone however, its degradation rate is too fast [1]. Therefore, a composite combining these two ceramics is valuable as it exhibits a suitable degradation rate. Because of the piezoelectric properties of bone it is known that electrical polarization of calcium phosphates can enhance the bioactivity and biointegration of implants [2]. Previous studies have already showed that HAp/b-TCP ceramics can be electrically polarized and that electrical polarization enhances osteogenesis in the early stage of the implantation process. However further studies are required to understand, optimize and improve the polarization technique [1]. In this work a commercial biphasic ceramic powders were pressed in a mold at 200 MPa to produce disc shaped samples. Afterwards, the samples were sintered at temperatures from 950ºC to 1150ºC and the influence of the heat treatment in the electrical polarization and subsequent bioactivity was investigated. The samples were polarized under a high DC electric field at relatively lower temperature (200oC) compared to previous studies and the stability of polarization was tested using TSDC (thermally depolarization currents) measurements. It was studied the influence of the water, initially present in the material, in the total charge deposited during polarization, its stability and its relation with heat treatment after pressing. The influence of the addition of b-TCP on sample’s stored charge was also evaluated. Finally bioactivity tests in a simulated body fluid solution were made taking into account the signal of the charge in each surface of the disc samples so that the results could be compared to previous ones.