Recent Publications

Export 8 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
P
Martins, M. C., J. P. Marques, A. M. Costa, J. P. Santos, F. Parente, S. Schlesser, Le E. - O. Bigot, and P. Indelicato. "Production and decay of sulfur excited species in an electron-cyclotron-resonance ion-source plasma." Physical Review A (Atomic, Molecular, and Optical Physics) 80 (2009): 032501. AbstractWebsite
The most important processes for the creation of S12+ to S14+ ions excited states from the ground configurations of S9+ to S14+ ions in an electron cyclotron resonance ion source, leading to the emission of K x-ray lines, are studied. Theoretical values for inner-shell excitation and ionization cross sections, including double-KL and triple-KLL ionizations, transition probabilities and energies for the de-excitation processes, are calculated in the framework of the multiconfiguration Dirac-Fock method. With reasonable assumptions about the electron energy distribution, a theoretical Kalpha x-ray spectrum is obtained, which is compared to recent experimental data.
Martins, M. C., J. P. Marques, A. M. Costa, J. P. Santos, F. Parente, S. Schlesser, E. O. Le Bigot, and P. Indelicato. "Production and decay of sulfur excited species in an electron-cyclotron-resonance ion-source plasma." Physical Review A 80 (2009): 032501. AbstractWebsite

The most important processes for the creation of S12+ to S14+ ions excited states from the ground configurations of S9+ to S14+ ions in an electron cyclotron resonance ion source, leading to the emission of K x-ray lines, are studied. Theoretical values for inner-shell excitation and ionization cross sections, including double-KL and triple-KLL ionizations, transition probabilities and energies for the de-excitation processes, are calculated in the framework of the multiconfiguration Dirac-Fock method. With reasonable assumptions about the electron energy distribution, a theoretical Kalpha x-ray spectrum is obtained, which is compared to recent experimental data.

Santos, J. P., M. C. Martins, A. M. Costa, J. P. Marques, P. Indelicato, and F. Parente. "Production and decay of chlorine ion excited species in an electron cyclotron resonance ion source plasma." Physica Scripta T144 (2011): 014005. AbstractWebsite

The most important processes for the creation of chlorine ion excited states from the ground configurations of Cl 10+ to Cl 15+ ions in an electron cyclotron resonance ion source, leading to the emission of K x-ray lines, were studied. Theoretical values for inner-shell excitation and ionization cross-sections, including double KL and triple KLL ionization, transition probabilities and energies for the de-excitation processes, were calculated in the framework of the multi-configuration Dirac–Fock method. With reasonable assumptions about the electron energy distribution, a theoretical Kα x-ray spectrum was obtained, which was then compared with recent experimental data.

Santos, J. P., M. C. Martins, A. M. Costa, J. P. Marques, P. Indelicato, and F. Parente. "Production and decay of chlorine ion excited species in an electron cyclotron resonance ion source plasma." Physica Scripta T144 (2011): 014005. AbstractWebsite

The most important processes for the creation of chlorine ion excited states from the ground configurations of Cl 10+ to Cl 15+ ions in an electron cyclotron resonance ion source, leading to the emission of K x-ray lines, were studied. Theoretical values for inner-shell excitation and ionization cross-sections, including double KL and triple KLL ionization, transition probabilities and energies for the de-excitation processes, were calculated in the framework of the multi-configuration Dirac–Fock method. With reasonable assumptions about the electron energy distribution, a theoretical Kα x-ray spectrum was obtained, which was then compared with recent experimental data.

Ménesguen, Y., {M. C. } Lépy, Y. Ito, M. Yamashita, S. Fukushima, M. Polasik, K. Słabkowska, Syrocki, E. Wȩder, P. Indelicato, {J. P. } Marques, {J. M. } Sampaio, M. Guerra, F. Parente, and {J. P. } Santos. "Precise x-ray energies of gadolinium determined by a combined experimental and theoretical approach." Journal Of Quantitative Spectroscopy & Radiative Transfer 236 (2019). Abstract

We combined different experimental techniques with a theoretical approach to determine a consistent set of diagram lines energies and binding energies. We propose an original approach consisting in determining the mass attenuation coefficients in an energy range covering the L-, M- and N- absorption edges, including a detailed evaluation of the associated uncertainties, to derive precisely the binding energies. We investigated the Lα, Lβ and M spectra of Gd with an independantly calibrated high-resolution anti-parallel double-crystal x-ray spectrometer. All the lines were identified and found in excellent agreement with the binding energies previously derived. Morever, we identified for the first time M5−O2, M4−O2,3 and M4−N2,3 diagram lines.

Amaro, P., F. Fratini, S. Fritzsche, P. Indelicato, J. P. Santos, and A. Surzhykov. "Parametrization of the angular correlation and degree of linear polarization in two-photon decays of hydrogenlike ions." Phys. Rev. A 86 (2012): 042509. AbstractWebsite

The spontaneous two-photon emission in hydrogenlike ions is investigated within the framework of second- order perturbation theory and Dirac’s equation. Special attention is paid to the angular correlation of the emitted photons as well as to the degree of linear polarization of one of the two photons, if the second is just observed under arbitrary angles. Expressions for the angular correlation and the degree of linear polarization are expanded in powers of cosine functions of the two-photon opening angle, whose coefficients depend on the atomic number and the energy sharing of the emitted photons. The effects of including higher (electric and magnetic) multipoles upon the emitted photon pairs beyond the electric-dipole approximation are also discussed. Calculations of the coefficients are performed for the transitions 2s1/2 → 1s1/2, 3d3/2 → 1s1/2, and 3d5/2 → 1s1/2, along the entire hydrogen isoelectronic sequence (1

Amaro, P., F. Fratini, S. Fritzsche, P. Indelicato, J. P. Santos, and A. Surzhykov. "Parametrization of the angular correlation and degree of linear polarization in two-photon decays of hydrogenlike ions." Physical Review A 86 (2012): 042509. AbstractWebsite

The spontaneous two-photon emission in hydrogenlike ions is investigated within the framework of second- order perturbation theory and Dirac’s equation. Special attention is paid to the angular correlation of the emitted photons as well as to the degree of linear polarization of one of the two photons, if the second is just observed under arbitrary angles. Expressions for the angular correlation and the degree of linear polarization are expanded in powers of cosine functions of the two-photon opening angle, whose coefficients depend on the atomic number and the energy sharing of the emitted photons. The effects of including higher (electric and magnetic) multipoles upon the emitted photon pairs beyond the electric-dipole approximation are also discussed. Calculations of the coefficients are performed for the transitions 2s1/2 → 1s1/2, 3d3/2 → 1s1/2, and 3d5/2 → 1s1/2, along the entire hydrogen isoelectronic sequence (1 Z 100).