Martins, M. C., J. P. Marques, A. M. Costa, J. P. Santos, F. Parente, S. Schlesser, Le E. - O. Bigot, and P. Indelicato. "
Production and decay of sulfur excited species in an electron-cyclotron-resonance ion-source plasma."
Physical Review A (Atomic, Molecular, and Optical Physics) 80 (2009): 032501.
AbstractThe most important processes for the creation of S12+ to S14+ ions excited states from the ground configurations of S9+ to S14+ ions in an electron cyclotron resonance ion source, leading to the emission of K x-ray lines, are studied. Theoretical values for inner-shell excitation and ionization cross sections, including double-KL and triple-KLL ionizations, transition probabilities and energies for the de-excitation processes, are calculated in the framework of the multiconfiguration Dirac-Fock method. With reasonable assumptions about the electron energy distribution, a theoretical Kalpha x-ray spectrum is obtained, which is compared to recent experimental data.
Indelicato, P., J. P. Santos, S. Boucard, and J. P. Descalux. "
QED and relativistic corrections in superheavy elements."
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 45 (2007): 155-170.
AbstractIn this paper we review the different relativistic and QED contributions to energies, ionic radii, transition probabilities and Landé g-factors in super-heavy elements, with the help of the MultiConfiguration Dirac-Fock method (MCDF). The effects of taking into account the Breit interaction to all orders by including it in the self-consistent field process are demonstrated. State of the art radiative corrections are included in the calculation and discussed. We also study the non-relativistic limit of MCDF calculation and find that the non-relativistic offset can be unexpectedly large.
Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "
Relativistic calculation of Kα hypersatellite line energies and transition probabilities for selected atoms with 12<=Z<=80."
Journal of Physics B: Atomic, Molecular and Optical Physics 40 (2007): 57.
AbstractThe transition probabilities of Kα hypersatellite lines and energy shifts with respect to the corresponding diagram lines are computed using the Dirac–Fock model for several values of atomic number Z throughout the periodic table. The influence of the Breit interaction on the Kα1h/Kα2h line intensity ratio, Kα1h and Kα2h line energy shifts and Kα1h to Kα2h line energy splitting is evaluated. Double-K shell hole threshold values for selected elements with 23 ⩽Z⩽ 30, calculated within the same approach, are compared with available experimental results.
Costa, A. M., M. C. Martins, J. P. Santos, P. Indelicato, and F. Parente. "
Relativistic calculation of Kβ hypersatellite energies and transition probabilities for selected atoms with 13<=Z<=80."
Journal of Physics B: Atomic and Molecular Physics 39 (2006): 2355-2366.
AbstractEnergies and transition probabilities of Kβ hypersatellite lines are computed using the Dirac–Fock model for several values of Z throughout the periodic table. The influence of the Breit interaction on the energy shifts from the corresponding diagram lines and on the Kβh1/Kβh3 intensity ratio is evaluated. The widths of the double-K hole levels are calculated for Al and Sc. The results are compared to experiment and to other theoretical calculations.