. 71 (2014): 109-115.
Abstract This work addresses the direct identification of cohesive law of Pinus pinaster in mode II. The end-notched flexure (ENF) test is selected for mode İI\} loading. The strain energy release rate in mode İI\} (GII) is determined according to the compliance-based beam method (CBBM) by processing the global load�displacement curve, without requirements to monitor the crack length during test. The fracture test is coupled with digital image correlation (DIC) for the local measurement of the crack tip opening displacement in mode İI\} (wII). Using a direct method, the cohesive law in mode İI\} (sII�wII) is determined by differentiating the GII�wII relationship. The procedure is validated from both numerical, using finite element analyses including cohesive zone modelling, and experimental approaches. The methodology and accuracy on this reconstruction is discussed. It is concluded that the proposed data reduction scheme is suitable for assessing the cohesive law of P. pinaster in mode II.