Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Arteiro, A., G. Catalanotti, J. Xavier, P. Linde, and P. P. Camanho. "Effect of tow thickness on the structural response of aerospace-grade spread-tow fabrics." Composite Structures. 179 (2017): 208-223. AbstractWebsite

The effect of ply thickness on the onset of intralaminar and interlaminar damage is extremely important for the structural response of laminated composite structures. This subject has gained particular interest in recent years due to the introduction in the market of spread-tow, ultra-thin carbon-fibre reinforcements with different configurations. In the present paper, an experimental test campaign was carried out to study the structural response of aerospace-grade plain weave spread-tow fabrics (STFs) of different areal weights. The results showed that, in spite of an apparent superior longitudinal tensile strength of the thick STF, the multidirectional thin-STF laminate exhibited an improved tensile unnotched strength over the thick-STF laminate, attributed to its damage suppression capability. However, damage suppression was also responsible for similar tensile notched strengths. In compression, the thin-STF laminate performed substantially better than the thick-STF laminate in both unnotched and notched configurations. Finally, a similar bearing response was obtained in both STF laminates, in spite of a slightly higher resistance of the thin-STF laminate to the propagation of subcritical damage mechanisms.

Garon-Roca, J., J. M. Sena-Cruz, P. Fernandes, and J. Xavier. "Effect of wet-dry cycles on the bond behaviour of concrete elements strengthened with NSM CFRP laminate strips." Composite Structures. 132 (2015): 331-340. AbstractWebsite

Abstract The near-surface mounted (NSM) strengthening technique is capable of effectively increase the bearing capacity of structural concrete elements. This technique which basically consists of placing \{FRP\} reinforcements inside small grooves cut in the concrete cover, has been widely investigated in terms of structural performance and ability to improve the flexural and shear behaviour of reinforced concrete beams and columns. However, little research has been carried out concerning to the \{NSM\} long-term performance and durability. Motivated by the need of increasing the knowledge on the expected durability of the \{NSM\} technique using \{CFRP\} laminates, this paper presents an experimental program in which direct pull-out tests are carried out for evaluating the bond behaviour of specimens aged through wet-dry cycles. A total of 30 specimens are tested, analysing the effect of the bond length, the groove width, the groove depth and the aging effect on the bond behaviour. Digital image correlation method is also used to identify the bond resistant mechanism developed in an element strengthened using \{NSM\} technique. Finally, using the experimental results, an analytical�numerical strategy is applied to establish the local bond stress�slip relationship.

Silva, Patrícia, Pedro Fernandes, José Sena-Cruz, José Xavier, Fernando Castro, Delfim Soares, and Vítor Carneiro. "Effects of different environmental conditions on the mechanical characteristics of a structural epoxy." Composites Part B: Engineering. 88 (2016): 55-63. AbstractWebsite

Abstract With the aim of characterising a commercially available epoxy adhesive used for fibre-reinforced polymers strengthening applications, when submitted to different environmental conditions, mainly thermal (TC), freeze–thaw (FT), and wet–dry (WD) cycles and immersion in pure (PW) and water with chlorides (CW) for periods of exposure that lasted up to 16 months, an experimental program was carried out. Several methodologies were used in its characterization, mainly the scanning electron microscope (SEM), dynamic mechanical analysis (DMA), standard tensile tests (STT) coupled with digital image correlation (DIC). In general the results revealed that the chemical composition was not affected by the environmental conditions. Nevertheless, it was verified through \{DMA\} and \{STT\} that the modulus of elasticity and tensile strength of the epoxy adhesive increased in the TC, while the specimens submitted to \{PW\} and \{CW\} faced a high degradation in terms of its mechanical properties. Eventually, the glass transition temperature (Tg) was not affected by the environmental conditions, apart from the specimens subjected to \{TC\} and FT, presenting a higher and lower Tg, respectively, when compared with the reference specimens.

Ghiassi, B., J. Xavier, D. V. Oliveira, A. Kwiecien, P. B. Lourenço, and B. Zajac. "Evaluation of the bond performance in FRP-brick components re-bonded after initial delamination." Composite Structures. 123 (2015): 271-281. Abstract

Abstract The bond behavior between Fiber Reinforced Polymers (FRPs) and masonry substrates has been the subject of many studies during the last years. Recent accelerated aging tests have shown that bond degradation and \{FRP\} delamination are likely to occur in FRP-strengthened masonry components under hygrothermal conditions. While an investigation on the possible methods to improve the durability of these systems is necessary, the applicability of different bond repair methods should also be studied. This paper aims at investigating the debonding mechanisms after repairing delaminated FRP-strengthened masonry components. FRP-strengthened brick specimens, after being delaminated, are repaired with two different adhesives: a conventional epoxy resin and a highly flexible polymer. The latter is used as an innovative adhesive in structural applications. The bond behavior in the repaired specimens is investigated by performing single-lap shear bond tests. Digital image correlation (DIC) is used for deeper investigation of the surface deformation and strains development. The effectiveness of the repair methods is discussed and compared with the strengthened specimens.

Majano-Majano, Almudena, Antonio José Lara-Bocanegra, José Xavier, and José Morais. "Experimental Evaluation of Mode II fracture Properties of Eucalyptus globulus L." Materials. 13 (2020). AbstractWebsite

Eucalyptus globulus Labill is a hardwood species of broad growth in temperate climates, which is receiving increasing interest for structural applications due to its high mechanical properties. Knowing the fracture behaviour is crucial to predict, through finite element models, the load carrying capacity of engineering designs with possibility of brittle failures such as elements with holes, notches, or certain types of joints. This behaviour can be adequately modelled on a macroscopic scale by the constitutive cohesive law. A direct identification of the cohesive law of Eucalyptus globulus L. in Mode II was performed by combining end-notched flexure (ENF) tests with digital image correlation (DIC) for radial-longitudinal crack propagation system. The critical strain energy release for this fracture mode, which represents the material toughness to crack-growth, was determined by applying the Compliance Based Beam Method (CBBM) as data reduction scheme and resulted in a mean value of 1.54 N/mm.