Fracture Characterization of Human Cortical Bone Under Mode I Loading

Citation:
Silva, F., M. de Moura, N. Dourado, J. Xavier, F. Pereira, J. Morais, M. Dias, P. Lourenço, and F. Judas. "Fracture Characterization of Human Cortical Bone Under Mode I Loading." Journal of Biomechanical Engineering. 137 (2015): 121004.

Abstract:

A miniaturized version of the double cantilever beam (DCB) test is used to determine the fracture energy in human cortical bone under pure mode I loading. An equivalent crack length based data-reduction scheme is used with remarkable advantages relative to classical methods. Digital image correlation (DIC) technique is employed to determine crack opening displacement at the crack tip being correlated with the evolution of fracture energy. A method is presented to obtain the cohesive law (trapezoidal bilinear softening) mimicking the mechanical behavior observed in bone. Cohesive zone modeling (CZM) (finite-element method) was performed to validate the procedure showing excellent agreement.

Notes:

n/a

Related External Link