Publications

Export 6 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Catalanotti, G., P. P. Camanho, J. Xavier, C. G. Dávila, and AT Marques. "Measurement of resistance curves in the longitudinal failure of composites using digital image correlation." Composites Science and Technology. 70 (2010): 1986-1993. Abstract
n/a
Catalanotti, G., and J. Xavier. "Measurement of the mode II intralaminar fracture toughness and R-curve of polymer composites using a modified Iosipescu specimen and the size effect law." Engineering Fracture Mechanics. 138 (2015): 202-214. AbstractWebsite

Abstract A modified Iosipescu specimen is proposed to measure the mode İI\} intralaminar fracture toughness and the corresponding crack resistance curve of fibre reinforced composites. Due to the impossibility of scaling the specimen, a modification of the classical size effect method is proposed. The calculation of the crack driving force curves is performed using the Finite Element Method. The classical Iosipescu shear feature was used and tests were coupled with digital image correlation to support the proposed approach. Experiments were performed on IM7/8552 material system and the R-curve was obtained. The steady-state value of the fracture toughness of the ply is found to be equal to R 0 ss = 34.4  kJ/m2.

Catalanotti, G., P. Kuhn, J. Xavier, and H. Koerber. "High strain rate characterisation of intralaminar fracture toughness of GFRPs for longitudinal tension and compression failure." Composite Structures. 240 (2020): 112068. AbstractWebsite

The elastic parameters, strengths, and intralaminar fracture toughness are determined for an E-Glass polymer composite material system, statically and at high strain rate, adapting methodologies previously developed by the authors for different carbon composites. Dynamic experiments are conducted using tension and compression Split-Hopkinson Bars (SHBs). A unique set of experimental parameters is obtained, and reported together with the experimental set-up, in order to ensure reproducibility. While in-plane elastic and strength properties were obtained by testing one specimen geometry, intralaminar fracture properties required the testing of different sized notched specimens with scaled geometries. This allowed the use of the size-effect method for the determination of the dynamic R-curve. When comparing these results with those previously obtained for a carbon/epoxy material system, it is observed that the dynamic fracture toughness exhibits a much more significant increase in both tension and compression. The obtained results permit the identification of the softening law at different strain rates, allowing its use in any analytical or numerical strength predictive method.

Catalanotti, C., J. Xavier, and P. P. Camanho. "Measurement of the compressive crack resistance curve of composites using the size effect law." Composites Part A: Applied Science and Manufacturing. 56 (2014): 300-307. Abstract
n/a
Cidade, Rafael A., Daniel S. V. Castro, Enrique M. Castrodeza, Peter Kuhn, Giuseppe Catalanotti, Jose Xavier, and Pedro P. Camanho. "Determination of mode I dynamic fracture toughness of IM7-8552 composites by digital image correlation and machine learning." Composite Structures. 210 (2019): 707-714. AbstractWebsite

An optical experimental procedure for evaluating the J-Integral from full-field displacement fields under dynamic loading is proposed in this work. The methodology is applied to measure the J-integral in the dynamic compressive loading of fiber-reinforced composites and to calculate the dynamic fracture toughness associated with the propagation of a kink-band. A modified J-Integral that considers inertia effects is calculated over the full-field measurements obtained by digital image correlation, for double edge-notched specimen of IM7-8552 laminates dynamically loaded in a split-Hopkinson pressure bar (SHPB). A sensibility study is conducted to address the influence of the speckle parameters. The results show good agreement with experimental observations obtained by using a different data reduction method, suggesting the existence of a rising R-curve for the studied material under dynamic loading. Furthermore, it was noticed that the inertia effect can be negligible, indicating a state of dynamic equilibrium in which quasi-static approaches may comfortably be used.

Crespo, J., A. Majano-Majano, J. Xavier, and M. Guaita. "Determination of the resistance-curve in Eucalyptus globulus through double cantilever beam tests." Materials and Structures. 51 (2018): 77. AbstractWebsite

The prediction of the fracture behaviour through reliable and practical criteria in the design of structural timber elements and connections has become of great importance and demands a proper fracture characterization of the material. Eucalyptus globulus Labill is envisioned as a hardwood species with great potential for high performance structural purposes because of its major mechanical and durability properties, being so far mainly used in paper industry. Experimental research on the identification of the resistance curves to derive the critical strain energy release rate in Eucalyptus globulus L. under pure mode I and RL crack propagation system is performed by means of Double Cantilever Beam tests. Three different data reduction schemes are compared: the Modified Experimental Compliance Method; and two approaches of the Compliance Based Beam Method. These methods take into account the non negligible damage mechanisms at the fracture process zone and have the advantage of being based exclusively on the specimen compliance following an equivalent crack concept, for which crack length monitoring during testing is not required. The Compliance Based Beam Method turns out to be the most appropriate data reduction scheme to obtain the critical energy release rate in eucalyptus because of its simplicity. Concerning this, a high average value of 720�J/m2 was obtained confirming Eucalyptus globulus L. as a promising hardwood species for timber structural design.