Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2008
Correia, Cristina, Stephane Besson, Carlos D. Brondino, Pablo J. Gonzalez, Guy Fauque, Jorge Lampreia, Isabel Moura, and Jose J. G. Moura. "Biochemical and spectroscopic characterization of the membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617." JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY. 13 (2008): 1321-1333. Abstract
Membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (I) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at E(m) = + 197 mV (heme c) and-4.5 mV (heme b). Variable-temperature (4-120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a {[}3Fe-4S](+) cluster and overlapping signals associated with at least three types of {[}4Fe-4S](+) centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called ``lowpH'' and ``high-pH,'' changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases.
Gavel, Olga Yu., Sergey A. Bursakov, Giulia Di Rocco, Jose Trincao, Ingrid J. Pickering, Graham N. George, Juan J. Calvete, Valery L. Shnyrov, Carlos D. Brondino, Alice S. Pereira, Jorge Lampreia, Pedro Tavares, Jose J. G. Moura, and Isabel Moura. "A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774." JOURNAL OF INORGANIC BIOCHEMISTRY. 102 (2008): 1380-1395. Abstract
Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the ``LID{''} domain. The sequence (129)Cys-X(5)-His-X(15)-Cys-X(2)-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain. (C) 2008 Elsevier Inc. All rights reserved.
2004
Bursakov, SA, OY Gavel, G. Di Rocco, J. Lampreia, J. Calvete, AS Pereira, JJG Moura, and I. Moura. "Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas." JOURNAL OF INORGANIC BIOCHEMISTRY. 98 (2004): 833-840. Abstract
An orange-coloured protein (ORP) isolated from Desulfovibrio gigas, a sulphate reducer, has been previously shown by extended X-ray absorption fine structure (EXAFS) to contain a novel mixed-metal sulphide cluster of the type {[}S2MoS2CuS2MoS2] {[}J. Am. Chem. Soc. 122 (2000) 8321]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. ORP is a soluble monomeric protein (11.8 kDa). The cluster is non-covalently bound to the polypeptide chain. The presence of a MoS42- moiety in the structure of the cofactor contributes with a quite characteristic UV-Vis spectra, exhibiting an orange colour, with intense absorption peaks at 480 and 338 nm. Pure ORP reveals an Abs(480)/Abs(338) ratio of 0.535. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biological function of ORP is discussed. (C) 2003 Elsevier Inc. All rights reserved.
2001
Di Rocco, G., AS Pereira, SA Bursakov, OY Gavel, F. Rusnak, J. Lampreia, JJG Moura, and I. Moura. "Cloning of a novel Mo-Cu containing protein from Desulfovibrio.gigas." JOURNAL OF INORGANIC BIOCHEMISTRY. 86 (2001): 202.
Bursakov, SA, OY Gavel, G. Di Rocco, J. Lampreia, VL Shnyrov, GN George, JJ Calvete, JJG Moura, and I. Moura. "Cobalt/Zinc as structural elements of bacterial adenylate kinase." JOURNAL OF INORGANIC BIOCHEMISTRY. 86 (2001): 163.
Correia, C., C. Carneiro, S. Besson, G. Fauque, J. Lampreia, I. Moura, and JJG Moura. "Spectroscopic characterization of the membrane nitrate reductase isolated from Pseudomonas nautica." JOURNAL OF INORGANIC BIOCHEMISTRY. 86 (2001): 186.
1996
Pereira, AS, R. Franco, MJ Feio, C. Pinto, J. Lampreia, MA Reis, J. Calvete, I. Moura, I. Beech, AR Lino, and JJG Moura. "Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 221 (1996): 414-421. Abstract
This communication reports the isolation, purification and characterization of key enzymes involved in dissimilatory sulfate reduction of a sulfate reducing bacterium classified as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) (Ddd NJ). The chosen strain, originally recovered from a corroding cast iron heat exchanger, was grown in large scale batch cultures. Physico-chemical and spectroscopic studies of the purified enzymes were carried out. These analyses revealed a high degree of similarity between proteins isolated from the DddNJ strain and the homologous proteins obtained from Desulfomicrobium baculatus Norway 4. In view of the results obtained, taxonomic reclassification of Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (NCIMB 8313) into Desulfomicrobium baculatus (New Jersey) is proposed. (C) 1996 Academic Press, Inc.