Publications

Export 29 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Franco, N., C. Chastre, and H. Biscaia. "Strengthening RC Beams Using Stainless Steel Continuous Reinforcement Embedded at Ends." Journal of Structural Engineering (United States). 146 (2020). AbstractWebsite

An innovative system for the flexural strengthening of RC structures designated continuous reinforcement embedded at ends (CREatE) is presented in this research work. The main characteristics and procedures for the application of this new strengthening technique were described. To evaluate the performance and efficiency of this technique, a set of RC T-beams was subjected to a four-point bending test setup. The reference RC T-beam was not strengthened; all other RC T-beams were strengthened with postinstalled stainless steel bars. Different application arrangements and different amounts of reinforcement were considered, and the CREatE technique was tested under monotonic and cyclic loading histories. The tests were modeled using the nonlinear finite-element method (FEM) to predict the performance of the RC T-beams, which allowed analyzing, in detail and with good agreement with the experiments, the influence of the CREatE technique on the (1) strains developed in the concrete, (2) cracking patterns, and (3) strains developed in the stirrups. Apart from the expected increases in the flexural stiffness and load-bearing capacity of the T-beams, the results showed that the use of the CREatE technique led to higher ductility indexes in the displacement compared with traditional techniques. Moreover, with the CREatE technique, premature debonding of the reinforcement material from the concrete tensioned surface - commonly observed in externally bonded reinforcement (EBR) strengthening systems - was eliminated. © 2020 American Society of Civil Engineers.

Biscaia, H. C., and P. Ribeiro. "A temperature-dependent bond-slip model for CFRP-to-steel joints." Composite Structures. 217 (2019): 186-205. AbstractWebsite

It is supposed that the adhesively bonded structures would perform well during their lifetime, but the action of high temperatures may affect the initial integrity of the joints, as recognized by some researchers. Still, there are few studies proposing a model to locally predict the interfacial bond behaviour of Carbon Fibre Reinforced Polymers (CFRP) bonded to a steel substrate when subjected to temperature changes. The influence of temperature on CFRP-to-steel bonded joints is, therefore, not very well understood yet and more studies are needed to better understand how these joints behave under such circumstances. The present work aims to contribute to the mitigation of the existing lack of knowledge on the performance of CFRP-to-steel bonded joints under high temperatures. Therefore, an experimental program was considered and specimens were tested at different temperatures: 20 °C, 35 °C, 50 °C, 65 °C, 80 °C, and 95 °C. To help the interpretation of the results, an analytical model is proposed to predict the load capacity of the CFRP-to-steel joints. The local bond-slip behaviour of the tested specimens is also analyzed and, based on a literature review, a temperature-dependent bond-slip model with a bi-linear shape is proposed and implemented into a commercial software based on the Finite Element Method (FEM). © 2019 Elsevier Ltd

Biscaia, H. C., and C. Chastre. "Theoretical analysis of fracture in double overlap bonded joints with FRP composites and thin steel plates." Engineering Fracture Mechanics. 190 (2018): 435-460. AbstractWebsite

The effective stress transfer between the fiber reinforced polymers (FRP) and the steel substrate is crucial for the successful retrofit of existing steel structures with FRP composites. However, there are no standard tests for FRP-to-steel interfaces, wherefore different test configurations have been used in recent years to assess the bond behaviour in these interfaces. The present study shows that the choice of test configuration is highly important and leads to different transfer stresses between the FRP and steel composites and consequently, has a direct influence on the strength of the bonded joint. Therefore, it is important to understand the debonding process that occurs in each test and avoid misinterpretations, erroneous analyses and dangerous characterizations of the interfacial behaviour of these interfaces. The current study presents a new analytical approach for the prediction of the debonding of FRP-to-steel interfaces when double-lap pull or double-strap tests are used. © 2017 Elsevier Ltd

Biscaia, H. C., J. Canejo, S. Zhang, and R. Almeida. "Using digital image correlation to evaluate the bond between carbon fibre-reinforced polymers and timber." Structural Health Monitoring. 21 (2022): 534-557. AbstractWebsite

The use of optic measurements such as digital image correlation to take strain measurements of fibre-reinforced polymers bonded to a substrate has been on the increase recently. This technique has proven to be useful to fully characterize the bond behaviour between two materials. Although modern digital cameras can take high-definition photos, this task is far from simple due to the tiny displacements that need to be measured. Consequently, digital image correlation measurements lead to relative errors that, at an initial stage of the debonding process, are higher than those calculated close to the debonding of the fibre-reinforced polymer from the substrate. This study aims to evaluate and analyse the use of the digital image correlation technique on the bond between carbon fibre-reinforced polymer laminates and timber when subjected to a pull-out load consistent with fracture Mode II. To allow the quantification of the relative errors obtained from the digital image correlation measurements during the full debonding process, several strain gauges were used to measure the strains in the carbon fibre-reinforced polymer composite. The accuracy of the digital image correlation measurements is analysed by comparing it with those obtained from the strain gauges, which is a very well-established measuring technique. Another contribution of this study is to check the versatility of the digital image correlation measurements on a broader range of situations. To that end, several timber prisms were bonded with seven different bonding techniques with and without the installation of a mechanical anchorage at the carbon fibre-reinforced polymer unpulled end. The results showed that the digital image correlation technique was able to track the slips calculated from the strain gauge measurements until the debonding load, but after that, some difficulties to measure the displacements of the anchored carbon fibre-reinforced polymer-to-timber joints were detected. The digital image correlation technique also over predicted bond stresses when compared with those taken from the strain gauges, which led to bond–slip relationships with higher bond stresses. © The Author(s) 2021.