Publications

Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Azevedo, A. S., J. P. Firmo, J. R. Correia, C. Chastre, H. Biscaia, and N. Franco. "Fire behaviour of CFRP-strengthened RC slabs using different techniques – EBR, NSM and CREatE." Composites Part B: Engineering. 230 (2022). AbstractWebsite

This paper presents an experimental study about the fire behaviour of reinforced concrete (RC) slabs strengthened with carbon fibre reinforced polymer (CFRP) strips, applied according to three different techniques: externally bonded reinforcement (EBR); near-surface mounted (NSM), and continuous reinforcement embedded at the ends (CREatE), a new technique that prevents premature CFRP debonding. The main goals of this study were three-fold: to understand and compare the fire behaviour of the strengthening techniques, namely the CREatE technique (yet to be studied); to assess the efficiency of the fire protection schemes (constant thickness vs. increased thickness at the CFRP anchorage zones) in extending the fire resistance of the CFRP systems; and, based on the experimental results and data available in the literature, to propose “critical” temperatures for the fire design of CFRP-strengthened RC members. The results obtained show that: (i) without protection, the CREatE technique presented higher fire resistance than the alternative NSM and EBR techniques (24 min vs. 16 min and 2 min); (ii) with fire protection, regardless of its geometry, the NSM and CREatE techniques presented a similar fire resistance (both above 120 min), higher than the EBR technique (less than 60 min); and (iii) the “critical” temperatures for each technique were defined as 1.0Tg, 2.5Tg and 3.0Tg for EBR, NSM and CREatE, respectively, with Tg being the glass transition temperature of the adhesive, defined based on the onset of the storage modulus curve decay from dynamic mechanical analysis. © 2021 Elsevier Ltd

Micaelo, R., M. Carvalho, R. Almeida, W. - Y. Gao, and H. Biscaia. "Numerical Analysis on the Bond Performance of Different Anchored Joints under Monotonic and Cyclic Pull-push Loading." Journal of Applied and Computational Mechanics. 8 (2022): 388-404. AbstractWebsite

This study aims to mitigate the gap of knowledge on the cyclic bond behaviour of Carbon Fiber Reinforced Polymer (CFRP) bonded onto a steel substrate. The Distinct Element Method was used to model different bonding techniques such asExternally Bonded Reinforcement (for reference purposes); the linear increase of the width of the CFRP composite; theassumption of a mixed adhesive; and using an additional steel plate bonded on the top of the CFRP. Compared with themonotonic loading simulations, the load capacity and ductility of the joints with the lowest overlapped bonded lengths decreasedwith the number of cycles. However, the strength of the CFRP-to-steel joints was not affected if the overlapping bonded joint hada long length © 2022. Published by Shahid Chamran University of Ahvaz

Biscaia, H. C., J. Canejo, S. Zhang, and R. Almeida. "Using digital image correlation to evaluate the bond between carbon fibre-reinforced polymers and timber." Structural Health Monitoring. 21 (2022): 534-557. AbstractWebsite

The use of optic measurements such as digital image correlation to take strain measurements of fibre-reinforced polymers bonded to a substrate has been on the increase recently. This technique has proven to be useful to fully characterize the bond behaviour between two materials. Although modern digital cameras can take high-definition photos, this task is far from simple due to the tiny displacements that need to be measured. Consequently, digital image correlation measurements lead to relative errors that, at an initial stage of the debonding process, are higher than those calculated close to the debonding of the fibre-reinforced polymer from the substrate. This study aims to evaluate and analyse the use of the digital image correlation technique on the bond between carbon fibre-reinforced polymer laminates and timber when subjected to a pull-out load consistent with fracture Mode II. To allow the quantification of the relative errors obtained from the digital image correlation measurements during the full debonding process, several strain gauges were used to measure the strains in the carbon fibre-reinforced polymer composite. The accuracy of the digital image correlation measurements is analysed by comparing it with those obtained from the strain gauges, which is a very well-established measuring technique. Another contribution of this study is to check the versatility of the digital image correlation measurements on a broader range of situations. To that end, several timber prisms were bonded with seven different bonding techniques with and without the installation of a mechanical anchorage at the carbon fibre-reinforced polymer unpulled end. The results showed that the digital image correlation technique was able to track the slips calculated from the strain gauge measurements until the debonding load, but after that, some difficulties to measure the displacements of the anchored carbon fibre-reinforced polymer-to-timber joints were detected. The digital image correlation technique also over predicted bond stresses when compared with those taken from the strain gauges, which led to bond–slip relationships with higher bond stresses. © The Author(s) 2021.

2021
Biscaia, H. C., R. Almeida, S. Zhang, and J. Canejo. "Experimental calibration of the bond-slip relationship of different CFRP-to-timber joints through digital image correlation measurements." Composites Part C: Open Access. 4 (2021). AbstractWebsite

Nowadays, the use of the Digital Image Correlation (DIC) technique has spread and it is being used in several engineering areas to measure displacements. The available data obtained from the DIC measurement to evaluate the bond performance between a Carbon fibre Reinforced Polymer (CFRP) externally bonded to a timber substrate is scarce. From the existing data obtained with other materials, this contactless technique revealed to be quite useful but its accuracy with other well-established techniques, such as the use of electric strain gauges is not well understood yet. Therefore, the current work aims to study the accuracy of 2D DIC measurements with the measurements obtained from the use of strain gauges within a low-cost perspective. To that end, several CFRP-to-timber bonded joints were tested under the single-lap shear test and different bonding techniques were considered as well. Some flaws intrinsically derived from the DIC measurements that complicate the bond assessment, such as the fluctuations in the generated displacements field, are identified, and to bypass this problem a new methodology is proposed. This new methodology is based on two different closed-form solutions that, after defining the local and global bond behaviours of different CFRP-to-timber bonded joints, allowed to eliminate the fluctuations found from the DIC measurements, facilitating the estimation and the comprehension of the full debonding process of the CFRP-to-timber joints, which was achieved with a good proximity to the homologous debonding process derived from the strain gauge measurements. © 2020

Azevedo, A., J. Firmo, J. Correia, C. Chastre, H. Biscaia, and N. Franco. "Fire behaviour of rc slab strips strengthened with advanced cfrp strengthening systems." fib Symposium. Vol. 2021-June. 2021. 1306-1315. Abstract

Carbon fibre reinforced polymer (CFRP) composite systems are widely used to strengthen reinforced concrete (RC) structures through bonding strips/sheets on the concrete surface – externally bonded reinforcement (EBR) technique, or through strips/rods bonded inside slits in the concrete cover – near-surface mounted (NSM) technique. Although both techniques provide high strength increases, it is usually not possible to use the CFRPs’ full strength due to premature debonding, especially with EBR. This limitation can be overcome when using CREatE (continuous reinforcement embedded at ends) technique (developed by the last three authors), which consists of (i) bonding the central part of the CFRP strip (as in EBR), or the CFRP rod (as in NSM), and (ii) anchoring both ends of the strip/rod inside the concrete section, after a transition curve, enhancing its anchorage capacity. However, all these techniques are susceptible to fire, due to the polymeric nature of CFRP materials and epoxy adhesives. This paper presents the results of an experimental study regarding the fire behaviour of RC slab strips strengthened with EBR, NSM and CREatE techniques, in which the influence of applying different fire protection systems was investigated. The specimens were strengthened with those systems and simultaneously subjected to a service load and the ISO 834 fire curve. The following main results were obtained: (i) without fire protection, the CREatE technique presented the highest fire resistance due to the better anchorage of the CFRP; (ii) when protected, the NSM technique presented higher fire resistance compared to EBR and CREatE techniques; and (iii) “critical” temperatures were proposed for each technique, 1.0Tg, 2.5Tg, and 3.0Tg for EBR, NSM and CREatE techniques, respectively. © Fédération Internationale du Béton (fib) – International Federation for Structural Concrete.