Publications

Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Oliveira, F. "Adiabatic limit of the Zakharov-Rubenchik Equation." Reports on Mathematical Physics. 28.12 (2008): 13-27.Website
Oliveira, F. "Approximation of the DNLS equation by the cubic nonlinear Schrodinger equation." Proceedings of the Royal Society of Edinburgh. 134 (2004): 595-607.Website
Oliveira, F. "A class of non-local operators for Vorticity waves." Applicable Analysis. 84 (2005): 1287-1302.Website
Dias, J. P., M. FIgueira, and F. Oliveira. "Existence and linearized stability of solitary waves for a quasilinear Benney system." Proceedings of the Royal Society of Edinburgh. 146-03 (2016): 547-564.Website
Oliveira, F., J. P. Dias, and M. FIgueira. "Existence of bound states for the coupled Schrödinger-KdV system with cubic nonlinearity." Comptes Rendus de l' Académie des Sciences. 349 (2010): 1079-1082.Website
Oliveira, F., J. P. Dias, and M. FIgueira. "Existence of local strong solutions for a quasilinear Benney Equation." Comptes Rendus de l' Académie des Sciences Paris - Série I. 344.8 (2007): 493-496.Website
Oliveira, F., and H. Tavares. "Ground States for a nonlinear Schrödinger system with sublinear coupling terms." Advanced Nonlinear Studies. 16 (2016): 381-387.Website
Oliveira, F., A. J. Soares, and G. Kremer. "H-theorem and trend to equilibrium of chemically reacting mixtures of gases." Kinetic and Related Models. 2 (2009): 333-343.Website
Oliveira, F. "Local analytic solutions to the DNLS equation in higher dimension." Science University of Tokyo Journal of Mathematics. 36.2 (2000): 385-406.
Corcho, A. J., J. D. Silva, and F. Oliveira. "Local and global well-posedness for the critical Schrödinger-Debye system." Proceedings of the American Mathematical Society. 141 (2013): 3485-3499.Website
Oliveira, F., J. P. Dias, M. FIgueira, and S. Antontsev. "Non-existence of global solutions for a quasilinear Benney system." Journal of Mathematical Fluid Mechanics. 13 (2011): 81-94.Website
Oliveira, F., and A. J. Soares. "A non-trivial explicit solution for the 14-velocity Cabannes kinetic model." Journal of Nonlinear Analysis TMA. 67.4 (2007): 1167-1172.Website
Oliveira, F., and A. J. Soares. "A note on a Discrete Boltzmann Equation with multiple collisions." Journal of Mathematical Analysis and Applications. 341.2 (2008): 1476-1481.Website
Oliveira, F. "A note on the existence of traveling-wave solutions to a Boussinesq system." Differential and Integral Equations. 29.1-2 (2016): 127-136.Website
Dias, J. P., F. Oliveira, and H. Tavares. "On a coupled system of a Ginzburg-Landau equation with a quasilinear conservation law." (Submitted).
Corcho, A., S. Correia, F. Oliveira, and J. D. Silva. "On a nonlinear Schrödinger system arising in quadratic media." (Submitted).
Dias, J. P., and F. Oliveira. "On a quasilinear non-local Benney system." Journal of Hyperbolic Differential Equations. 14.1 (2017): 135-156.Website
Oliveira, F., and A. J. Soares. "On global solutions to the discrete Boltzmann equations with chemical reactions." Mathematical Methods in Applied Sciences. 28 (2005): 1491-1506.Website
Oliveira, F., J. P. Dias, and M. FIgueira. "On the Cauchy problem describing an electron-phonon interaction." Chinese Annals of Mathematics. 32 (2011): 483-496.Website
Pava, J. A., C. Banquet, J. D. Silva, and F. Oliveira. "The Regularized Boussinesq equation: Instability of periodic traveling waves." Journal of Differential Equations. 254.9 (2013): 3994-4023.Website
Oliveira, F., H. Tavares, and S. Correia. "Semitrivial vs. fully nontrivial ground states in cooperative cubic Schrödinger systems with d ≥ 3 equations." Journal of Functional Analysis. 271.8 (2016): 2247-2273.Website
Oliveira, F., J. P. Dias, and M. FIgueira. "Well-posedness and existence of bound states for coupled Schrödinger-gKdV system." Journal of Nonlinear Analysis. 73 (2010): 2686-2698.Website
Conference Proceedings
Oliveira, F., A. J. Soares, and G. Kremer An H-theorem for chemically reacting gases. DYNA2008 - Dynamics, Games and Science Conference in honor of Maurício Peixoto and David Rand. Braga, Portugal: Springer, 2010.
Oliveira, F., and A. J. Soares On global solutions to the discrete Boltzmann equations with chemical reactions. 13th Conference on Waves and Stability in Continuous Media. Acereale, Italy: World Scientific, 2005.