Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Barros A, Quraishi S, Martins M, Gurikov P, Subrahmanyam R, Smirnova I, Duarte AR, Reis RL. {Hybrid Alginate-Based Cryogels for Life Science Applications}. Chemie-Ingenieur-Technik. 2016;88. Abstract

© 2016 WILEY-VCH Verlag GmbH {&} Co. KGaA, Weinheim. This work presents a novel route toward porous scaffolds for tissue engineering and regenerative medicine (TERM) applications. Hybrid cryogels with gelatin, gellan gum, carboxymethylcellulose, and lignin were prepared by a two-step process. Textural properties of the cryogels were analyzed by SEM and micro-computed tomography. The results indicated that rapid freezing retained sample shape and yielded macroporous materials. The mechanical properties of the cryogels were characterized in compression mode. Cytotoxicity studies indicated that the hybrid-alginate cryogels did not present cytotoxicity and have the potential to be used in TERM.

2015
Quraishi S, Martins M, Barros AA, Gurikov P, Raman SP, Smirnova I, Duarte AR, Reis RL. {Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering}. Journal of Supercritical Fluids. 2015;105:1-8. Abstractpdf

This paper presents a novel approach toward the production of hybrid alginate–lignin aerogels. The key idea of the approach is to employ pressurized carbon dioxide for gelation. Exposure of alginate and lignin aqueous alkali solution containing calcium carbonate to CO2at 4.5 MPa resulted in a hydrogel formation. Various lignin and CaCO3concentrations were studied. Stable hydrogels could be formed up to 2:1 (w/w) alginate-to-lignin ratio (1.5 wt{%} overall biopolymer concentration). Upon substitution of water with ethanol, gels were dried in supercritical CO2to produce aerogels. Aerogels with bulk density in the range 0.03–0.07 g/cm3, surface area up to 564 m2/g and pore volume up to 7.2 cm3/g were obtained. To introduce macroporosity, the CO2induced gelation was supplemented with rapid depressurization (foaming process). Macroporosity up to 31.3 ± 1.9{%} with interconnectivity up to 33.2 ± 8.3{%} could be achieved at depressurization rate of 3 MPa/min as assessed by micro-CT. Young's modulus of alginate–lignin aerogels was measured in both dry and wet states. Cell studies revealed that alginate–lignin aerogels are non-cytotoxic and feature good cell adhesion making them attractive candidates for a wide range of applications including tissue engineering and regenerative medicine.

Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte AR, Reis RL. {Preparation of macroporous alginate-based aerogels for biomedical applications}. Journal of Supercritical Fluids. 2015. Abstractpdf

Aerogels are a special class of ultra-light porous materials with growing interest in biomedical applications due to their open pore structure and high surface area. However, they usually lack macroporosity, while mesoporosity is typically high. In this work, carbon dioxide induced gelation followed by expansion of the dissolved CO{\textless}inf{\textgreater}2{\textless}/inf{\textgreater} was performed to produce hybrid calcium-crosslinked alginate-starch hydrogels with dual meso- and macroporosity. The hydrogels were subjected to solvent exchange and supercritical drying to obtain aerogels. Significant increase in macroporosity from 2 to 25{%} was achieved by increasing expansion rate from 0.1 to 30 bar/min with retaining mesoporosity (BET surface and BJH pore volume in the range 183-544m{\textless}sup{\textgreater}2{\textless}/sup{\textgreater}/g and 2.0-6.8cm{\textless}sup{\textgreater}3{\textless}/sup{\textgreater}/g, respectively). In vitro bioactivity studies showed that the alginate-starch aerogels are bioactive, i.e. they form hydroxyapatite crystals when immersed in a simulated body fluid solution. Bioactivity is attributed to the presence of calcium in the matrix. The assessment of the biological performance showed that the aerogels do not present a cytotoxic effect and the cells are able to colonize and grow on their surface. Results presented in this work provide a good indication of the potential of the alginate-starch aerogels in biomedical applications, particularly for bone regeneration.