. 13 (2023): 65-74.
A numerical implementation of the upper-bound theorem of limit analysis is applied to determine two-dimensional (2D) and three-dimensional (3D) active horizontal earth pressure coefficients considering seismic actions through a horizontal seismic coefficient. Results are obtained for vertical wall, horizontal soil, different friction angles of the soil, soil-to-wall friction ratios, horizontal seismic coefficients and wall width-to-height ratios. The few cases for which 3D active earth pressure coefficients are available in the literature using upper-bound methods were used for comparison with the corresponding earth pressure coefficients obtained in this study. This showed a general improvement of these results, which allows expecting a good accuracy for the set of cases studied. The ratios between the 3D and 2D horizontal active earth pressure coefficients are found to be practically independent of the soil-to-wall friction ratio. An equation is proposed for calculating these ratios. This equation can be easily used in the design of geotechnical structures requiring the determination of 3D active earth pressure coefficients.