Publications

Export 99 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
K
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Criteria for n(d)-normality of weighted singular integral operators with shifts and slowly oscillating data." Proceedings of the London Mathematical Society. 116.4 (2018): 997-1027 .Website
Karlovich, Alexei Yu. "Singular integral operators with regulated coefficients in reflexive Orlicz spaces." Siberian Mathematical Journal. 38.2 (1997): 253-266.Website
Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Fredholmness and index of simplest singular integral operators with two slowly oscillating shifts." Operators and Matrices. 8.4 (2014): 935-955. AbstractWebsite

Let \(\alpha\) and \(\beta\) be orientation-preserving diffeomorphisms (shifts) of \(\mathbb{R}_+=(0,\infty)\) onto itself with the only fixed points \(0\) and \(\infty\), where the derivatives \(\alpha'\) and \(\beta'\) may have discontinuities of slowly oscillating type at \(0\) and \(\infty\). For \(p\in(1,\infty)\), we consider the weighted shift operators \(U_\alpha\) and \(U_\beta\) given on the Lebesgue space \(L^p(\mathbb{R}_+)\) by \(U_\alpha f=(\alpha')^{1/p}(f\circ\alpha)\) and \(U_\beta f= (\beta')^{1/p}(f\circ\beta)\). We apply the theory of Mellin pseudodifferential operators with symbols of limited smoothness to study the simplest singular integral operators with two shifts \(A_{ij}=U_\alpha^i P_++U_\beta^j P_-\) on the space \(L^p(\mathbb{R}_+)\), where \(P_\pm=(I\pm S)/2\) are operators associated to the Cauchy singular integral operator \(S\), and \(i,j\in\mathbb{Z}\). We prove that all \(A_{ij}\) are Fredholm operators on \(L^p(\mathbb{R}_+)\) and have zero indices.

Karlovich, Alexei Yu. "Singular integral operators on variable Lebesgue spaces over arbitrary Carleson curves." Topics in Operator Theory: Operators, Matrices and Analytic Functions, Vol. 1. Operator Theory: Advances and Applications, 202. Eds. JA Ball, V. Bolotnikov, JW Helton, L. Rodman, and IM Spitkovsky. Basel: Birkhäuser, 2010. 321-336. Abstract

In 1968, Israel Gohberg and Naum Krupnik discovered that local spectra of singular integral operators with piecewise continuous coefficients on Lebesgue spaces \(L^p(\Gamma)\) over Lyapunov curves have the shape of circular arcs. About 25 years later, Albrecht Böttcher and Yuri Karlovich realized that these circular arcs metamorphose to so-called logarithmic leaves with a median separating point when Lyapunov curves metamorphose to arbitrary Carleson curves. We show that this result remains valid in a more general setting of variable Lebesgue spaces \(L^{p(\cdot)}(\Gamma)\) where \(p:\Gamma\to(1,\infty)\) satisfies the Dini-Lipschitz condition. One of the main ingredients of the proof is a new condition for the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with weights related to oscillations of Carleson curves.

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Semi-Fredholmness of weighted singular integral operators with shifts and slowly oscillating data." Operator Theory, Operator Algebras, and Matrix Theory. Operator Theory: Advances and Applications, vol. 267. Eds. Carlos André, Maria Amélia Bastos, Alexei Yu. Karlovich, Bernd Silbermann, and Ion Zaballa. Basel: Birkhäuser, 2018. 221-246.
Karlovich, Alexei. "Toeplitz operators between distinct abstract Hardy spaces." Extended Abstracts Fall 2019. Trends in Mathematics, vol 12. Eds. Abakumov E., Baranov A., Borichev A., Fedorovskiy K., and Ortega-Cerdà J. Cham: Birkhäuser, 2021. 105-112.
Karlovich, Alexei Yu. "Semi-Fredholm singular integral operators with piecewise continuous coefficients on weighted variable Lebesgue spaces are Fredholm." Operators and Matrices. 1.3 (2007): 427-444. AbstractWebsite

Suppose \(\Gamma\) is a Carleson Jordan curve with logarithmic whirl points, \(\varrho\) is a Khvedelidze weight, \(p:\Gamma\to(1,\infty)\) is a continuous function satisfying \(|p(\tau)-p(t)|\le -\mathrm{const}/\log|\tau-t|\) for \(|\tau-t|\le 1/2\), and \(L^{p(\cdot)}(\Gamma,\varrho)\) is a weighted generalized Lebesgue space with variable exponent. We prove that all semi-Fredholm operators in the algebra of singular integral operators with \(N\times N\) matrix piecewise continuous coefficients are Fredholm on \(L_N^{p(\cdot)}(\Gamma,\varrho)\).

Karlovich, Alexei Yu., and Ilya M. Spitkovsky. "Pseudodifferential operators on variable Lebesgue spaces." Operator Theory, Pseudo-Differential Equations, and Mathematical Physics. Operator Theory: Advances and Applications, 228. Eds. Yuri I. Karlovich, Luigi Rodino, Bernd Silbermann, and Ilya M. Spitkovsky. Basel: Birkhäuser, 2013. 173-183. Abstract

Let \(\mathcal{M}(\mathbb{R}^n)\) be the class of bounded away from one and infinity functions \(p:\mathbb{R}^n\to[1,\infty]\) such that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space \(L^{p(\cdot)}(\mathbb{R}^n)\). We show that if \(a\) belongs to the Hörmander class \(S_{\rho,\delta}^{n(\rho-1)}\) with \(0<\rho\le 1\), \(0\le\delta<1\), then the pseudodifferential operator \(\operatorname{Op}(a)\) is bounded on the variable Lebesgue space \(L^{p(\cdot)}(\mathbb{R}^n)\) provided that \(p\in\mathcal{M}(\mathbb{R}^n)\). Let \(\mathcal{M}^*(\mathbb{R}^n)\) be the class of variable exponents \(p\in\mathcal{M}(\mathbb{R}^n)\) represented as \(1/p(x)=\theta/p_0+(1-\theta)/p_1(x)\) where \(p_0\in(1,\infty)\), \(\theta\in(0,1)\), and \(p_1\in\mathcal{M}(\mathbb{R}^n)\). We prove that if \(a\in S_{1,0}^0\) slowly oscillates at infinity in the first variable, then the condition \[ \lim_{R\to\infty}\inf_{|x|+|\xi|\ge R}|a(x,\xi)|>0 \] is sufficient for the Fredholmness of \(\operatorname{Op}(a)\) on \(L^{p(\cdot)}(\mathbb{R}^n)\) whenever \(p\in\mathcal{M}^*(\mathbb{R}^n)\). Both theorems generalize pioneering results by Rabinovich and Samko [RS08] obtained for globally log-Hölder continuous exponents \(p\), constituting a proper subset of \(\mathcal{M}^*(\mathbb{R}^n)\).

Karlovich, Alexei Yu. "Algebras of singular integral operators with piecewise continuous coefficients on weighted Nakano spaces." The Extended Field of Operator Theory. Operator Theory: Advances and Applications, 171. Ed. Michael A. Dritschel. Basel: Birkhäuser, 2007. 171-188. Abstract

We find Fredholm criteria and a formula for the index of an arbitrary operator in the Banach algebra of singular integral operators with piecewise continuous coefficients on Nakano spaces (generalized Lebesgue spaces with variable exponent) with Khvedelidze weights over either Lyapunov curves or Radon curves without cusps. These results ``localize'' the Gohberg-Krupnik Fredhohn theory with respect to the variable exponent.

Karlovich, Alexei, and Eugene Shargorodsky. "Algebras of convolution type operators with continuous data do not always contain all rank one operators." Integral Equations and Operator Theory. 93.2 (2021): 16.Website
Karlovich, Alexei Yu. "Remark on the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with radial oscillating weights." Journal of Function Spaces and Applications. 7 (2009): 301-311. AbstractWebsite

Recently V. Kokilashvili, N. Samko, and S. Samko have proved a sufficient condition for the boundedness of the Cauchy singular integral operator on variable Lebesgue spaces with radial oscillating weights over Carleson curves. This condition is formulated in terms of Matuszewska-Orlicz indices of weights. We prove a partial converse of their result.

Karlovich, Alexei Yu. "Norms of Toeplitz and Hankel operators on Hardy type subspaces of rearrangement-invariant spaces." Integral Equations and Operator Theory. 49 (2004): 43-64. AbstractWebsite

We prove analogues of the Brown-Halmos and Nehari theorems on the norms of Toeplitz and Hankel operators, respectively, acting on subspaces of Hardy type of reflexive rearrangement-invariant spaces with nontrivial Boyd indices.

Karlovich, Alexei Yu. "Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces." Journal of Integral Equations and Applications. 15.3 (2003): 263-320. AbstractWebsite

We prove necessary conditions for the Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces. These conditions are formulated in terms of indices of submultiplicative functions associated with local properties of the space, of the curve, and of the weight. As an example, we consider weighted Nakano spaces \(L^{p(\cdot)}_w\) (weighted Lebesgue spaces with variable exponent). Moreover, our necessary conditions become also sufficient for weighted Nakano spaces over nice curves whenever \(w\) is a Khvedelidze weight, and the variable exponent \(p(t)\) satisfies the estimate \(|p(\tau)-p(t)|\le A/(-\log|\tau-t|)\).

Karlovich, Alexei Yu., Yuri I. Karlovich, and Amarino B. Lebre. "Necessary Fredholm conditions for weighted singular integral operators with shifts and slowly oscillating data." Journal of Integral Equations and Applications. 29.3 (2017): 365-399.
Karlovich, Alexei Yu. "Wavelet bases in Banach function spaces." Bulletin of the Malaysian Mathematical Sciences Society. 44.3 (2021): 1669-1689.Website
Karlovich, Alexei Yu, Helena Mascarenhas, and Pedro A. Santos. "Finite section method for a Banach algebra of convolution type operators on Lp(R) with symbols generated by PC and SO." Integral Equations and Operator Theory. 67.4 (2010): 559-600. AbstractWebsite

We prove necessary and sufficient conditions for the applicability of the finite section method to an arbitrary operator in the Banach algebra generated by the operators of multiplication by piecewise continuous functions and the convolution operators with symbols in the algebra generated by piecewise continuous and slowly oscillating Fourier multipliers on \(L^p(\mathbb{R})\), \(1 < p < \infty\).

Karlovich, Alexei Yu., and Yuri I. Karlovich. "One-sided invertibility of binomial functional operators with a shift on rearrangement-invariant spaces." Integral Equations and Operator Theory. 42 (2002): 201-228. AbstractWebsite

Let \(\Gamma\) be an oriented Jordan smooth curve and \(\alpha\) a diffeomorphism of $\Gamma$ onto itself which has an arbitrary nonempty set of periodic points. We prove criteria for one-sided invertibility of the binomial functional operator \(A=aI-bW\) where $a$ and $b$ are continuous functions, \(I\) is the identity operator, \(W\) is the shift operator, \(Wf=f\circ\alpha\), on a reflexive rearrangement-invariant space \(X(\Gamma)\) with Boyd indices \(\alpha_X,\beta_X\) and Zippin indices \(p_X,q_X\) satisfying inequalities
\[
0<\alpha_X=p_X\le q_X=\beta_X<1.
\]

Karlovich, Alexei Yu. "Boundedness of pseudodifferential operators on Banach function spaces." Operator Theory, Operator Algebras and Applications. Operator Theory: Advances and Applications, 242. Eds. Maria Amélia Bastos, Amarino Lebre, Stefan Samko, and Ilya M. Spitkovsky. Basel: Birkhäuser/Springer, 2014. 185-195. Abstract

We show that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space \(X(\mathbb{R}^n)\) and on its associate space \(X'(\mathbb{R}^n)\), then a pseudodifferential operator \(\operatorname{Op}(a)\) is bounded on \(X(\mathbb{R}^n)\) whenever the symbol \(a\) belongs to the Hörmander class \(S_{\rho,\delta}^{n(\rho-1)}\) with \(0<\rho\le 1\), \(0\le\delta<1\) or to the the Miyachi class \(S_{\rho,\delta}^{n(\rho-1)}(\varkappa,n)\) with \(0\le\delta\le\rho\le 1\), \(0\le\delta<1\), and \(\varkappa>0\). This result is applied to the case of variable Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R}^n)\).

Karlovich, Alexei Yu., and L. Maligranda. "On the interpolation constant for subadditive operators in Orlicz spaces." Proceedings of the International Symposium on Banach and Function Spaces II (ISBFS 2006), Kyushu Institute of Technology, Kitakyushu, Japan, 14-17 September 2006. Eds. M. Kato, and L. Maligranda. Yokohama: Yokohama Publishers, 2008. 85-101.
Karlovich, Alexei, and Eugene Shargorodsky. "The Brown-Halmos theorem for a pair of abstract Hardy spaces." Journal of Mathematical Analysis and Applications. 472 (2019): 246-265.Website
Karlovich, Alexei Yu., Helena Mascarenhas, and Pedro A. Santos. "Erratum to: Finite section method for a Banach algebra of convolution type operators on Lp(R) with symbols generated by PC and SO (vol 37, pg 559, 2010)." Integral Equations and Operator Theory. 69.3 (2011): 447-449. AbstractWebsite

We correct Theorem 3.2 and Corollary 3.3 from [KMS]. This correction ammounts to the observation that the proof of the main result in [KMS] contains a gap in Lemma~10.6 for \(p\ne 2\). The results of [KMS] are true for \(p=2\).

Karlovich, Alexei Yu. "On the essential norm of the Cauchy singular integral operator in weighted rearrangement-invariant spaces." Integral Equations and Operator Theory. 38 (2000): 28-50. AbstractWebsite

In this paper we extend necessary conditions for Fredholmness of singular integral operators with piecewise continuous coefficients in rearrangement-invariant spaces [K98] to the weighted case \(X(\Gamma,w)\). These conditions are formulated in terms of indices \(\alpha(Q_tw)\) and \(\beta(Q_tw)\) of a submultiplicative function \(Q_tw\), which is associated with local properties of the space, of the curve, and of the weight at the point \(t\Gamma\). Using these results we obtain a lower estimate for the essential norm \(S\) of the Cauchy singular integral operator \(S\) in reflexive weighted rearrangement-invariant spaces \(X(\Gamma, w)\) over arbitrary Carleson curves \(\Gamma\):
\[
|S|\ge\cot(\pi\lambda_{\Gamma,w}/2)
\]
where \(\lambda_{\Gamma,w} :=inf_{t\in\Gamma} min\{\alpha(Q_tw), 1 - \beta(Q_tw)\}\). In some cases we give formulas for computation of \(\alpha(Q_tw)\) and \(\beta(Q_tw)\).

Karlovich, Alexei Yu. "The Stechkin inequality for Fourier multipliers on variable Lebesgue spaces." Mathematical Inequalities and Applications. 18.4 (2015): 1473-1481. Abstract

We prove the Stechkin inequality for Fourier multipliers on variable Lebesgue spaces under some natural assumptions on variable exponents.

Karlovich, Alexei Yu. "Asymptotics of Toeplitz determinants generated by functions with Fourier coefficients in weighted Orlicz sequence classes." Function Spaces. Contemporary Mathematics, 435. Ed. K. Jarosz. Providence, RI: American Mathematical Society, 2007. 229-243. Abstract

We prove asymptotic formulas for Toeplitz determinants generated by functions with sequences of Fourier coefficients belonging to weighted Orlicz sequence classes. We concentrate our attention on the case of nonvanishing generating functions with nonzero Cauchy index.