{Charging effects and surface potential variations of Cu-based nanowires}

Nunes, D., T. R. Calmeiro, S. Nandy, J. V. Pinto, A. Pimentel, P. Barquinha, P. A. Carvalho, J. C. Walmsley, E. Fortunato, and R. Martins, "{Charging effects and surface potential variations of Cu-based nanowires}", Thin Solid Films: Elsevier B.V., pp. 1–9, 2015.


The presentwork reports charging effects and surface potential variations in pure copper, cuprous oxide and cu- pric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved throughmicrowave irradiation and cupric oxide nanowireswere obtained via furnace annealing in at- mospheric conditions. Structural characterization of the nanowireswas carried out byX-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO2 dielectric substrate. Both the probe/nanowire capacitance as well as the sub- strate polarization increased with the applied bias. Cu2O and CuO nanowires behaved distinctively during the EFMmeasurements in accordancewith their band gap energies. Thework functions(WF) of the Cu-based nano- wires, obtained by KPFM measurements, yieldedWFCuO N WFCu N WFCu2O



Related External Link