Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
L
Penalva, H., Gomes M. I., Caeiro F., & Neves M. M. (2020).  Lehmer{'}s mean-of-order-p extreme value index estimation: a simulation study and applications. Journal of Applied Statistics. 47, 2825-2845., Number 13-15 Abstract
n/a
Caeiro, F., Gomes M. I., & Henriques-Rodrigues L. (2013).  A location invariant probability weighted moment EVI-estimator. : Notas e Comunicações do CEAUL 30/20132013_30_port-ppwm-final.pdf
Caeiro, F. A. G. G., Gomes I. M., & Henriques-Rodrigues L. (2016).  A location-invariant probability weighted moment estimation of the Extreme Value Index. International Journal of Computer Mathematics. 93(4), 676 - 695., 2016/4/2 AbstractWebsite

The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators, the so-called PORT-PPWM EVI-estimators, is derived, and an alternative class of location-invariant EVI-estimators, the generalized Pareto probability weighted moments (GPPWM) EVI-estimators is considered as an alternative. These two classes of estimators, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator and a recent class of minimum-variance reduced-bias estimators are compared for finite samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of the tuning parameters under play is put forward and applied to simulated and real data sets.The peaks over random threshold (PORT) methodology and the Pareto probability weighted moments (PPWM) of the largest observations are used to build a class of location-invariant estimators of the Extreme Value Index (EVI), the primary parameter in statistics of extremes. The asymptotic behaviour of such a class of EVI-estimators, the so-called PORT-PPWM EVI-estimators, is derived, and an alternative class of location-invariant EVI-estimators, the generalized Pareto probability weighted moments (GPPWM) EVI-estimators is considered as an alternative. These two classes of estimators, the PORT-PPWM and the GPPWM, jointly with the classical Hill EVI-estimator and a recent class of minimum-variance reduced-bias estimators are compared for finite samples, through a large-scale Monte-Carlo simulation study. An adaptive choice of the tuning parameters under play is put forward and applied to simulated and real data sets.

Caeiro, F., & Gomes D. S. R. P. (2015).  A log probability weighted moment estimator of extreme quantiles. Theory and Practice of Risk Assessment - ICRA5 2013. 136, 293 - 303., 2015: Springer New York LLC Abstract

In this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.In this paper we consider the semi-parametric estimation of extreme quantiles of a right heavy-tail model. We propose a new Probability Weighted Moment estimator for extreme quantiles, which is obtained from the estimators of the shape and scale parameters of the tail. Under a second-order regular variation condition on the tail, of the underlying distribution function, we deduce the non degenerate asymptotic behaviour of the estimators under study and present an asymptotic comparison at their optimal levels. In addition, the performance of the estimators is illustrated through an application to real data.